Operational Risk revisited: from Basel to the coronavirus

Paul Embrechts
Professor em. of Mathematics
Department of Mathematics, ETH Zurich
RiskLab & Risk Center
www.math.ethz.ch/~embrechts
Bachelier Finance Society, World Seminar
May 7, 2020
Table of Contents:

• About the title
• The structure of OpRisk data
• OpRisk under Basel IV
• Resulting mathematical problems
• Weitzman’s Dismal "Theorem"
• Conclusion
About the title
Operational Risk revisited:

from BIS building in Basel (CH) to SARS-CoV-2
SARS-CoV-2 and Covid19: why “corona”?

Transmission electron micrograph of SARS-CoV-19 virions with visible coronae (Wikipedia)
Risk Components (Basel II)
(now Basel IV (2017) as of 1/1/2022)
(also Solvency II (2019), SST (2011), FSA, BoE, ...)

- Credit Risk
- Market Risk
- Operational Risk
- Business Risk...

Operational Risk: The risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. Including legal risk, but excluding strategic and reputational risk.

- Coronavirus
- Financial crisis
From The Economist, 13/8/2016: OpRisk losses as % of market capitalisation for Q2 2016
My Farewell Lecture at ETH on May 30, 2018:

https://video.ethz.ch/speakers/lecture/32c992d0-4586-45de-98ea-dea16af0c154.html

After 42’30”:
What next ... academically?

From a pre-emeritus research portfolio on “The mathematical understanding of risk” to a post-emeritus mandate/book project on “The public understanding and communication of risk” (*)

(with Valérie Chavez-Demoulin (UNIL Lausanne) & Marius Hofert (Waterloo))

(*) Working title 2020/21
The new *(coffee-table)* book should be a bridge from the more technical to the general public!

New: Exercise book
www.qrmtutorial.org
- March 16 drop by 12%
- Largest one-day drop since 19/10/87
- Several circuit breakers were activated...
- A global worldwide economic tsunami

The great wave off Kanagawa
Katsushika Hokusai
(31/10/1760 - 10/5/1849)

On 7/5, 2pm, worldwide: 3 843 484 confirmed, 265 659 deceased
Some comments on OpRisk & Coronavirus:

• A coronavirus-type pandemic was predicted in numerous scientific papers, e.g. 2005 ... including possible transmission bats -> people
• In highly visible talks, like Bill Gates’ TED talk in 2015 <- Ebola
• Or books: Nassim Taleb’s Black Swan, p. 317 <- physical networks
• And hence it is not a Black Swan in Taleb’s language! ... and& today
• Pandemic stress testing is part of insurance regulation, e.g. within Solvency 2 and the Swiss Solvency Test: Spanish Flu type 0.15% mortality increase as stress event, BCP/M, ORSA, ...
• There exists a huge literature on the history of pandemics and estimates of their return periods. The next pandemic was “around the corner”, see -->
Further examples:

• **UK Financial Sector Market Wide Pandemic Exercise 2006** - Progress Report (May 2008) FSA, HM Treasury and Bank of England: “Previous flu pandemics have occurred at 10 - 40 year intervals. It is now 39 years since the last pandemic (*). The international consensus is that a flu pandemic could occur at any time ... “

• **BIS (2011), Principles for the Sound Management of Operational Risk**, Basel Committee on Banking Supervision: “... a pandemic event that affects human resources can result in significant financial losses to the bank, as well as broader disruptions to the financial system. To provide resiliency against this risk, a bank should establish business continuity plans ... “ ... what about societal continuity plans (PE)?

• **We should have been better prepared ... we were not!**

(*) 1968-69 Hong Kong flu (H3N2) pandemic with about 1 to 2 million deaths worldwide!
From Albert Camus’ 1947 “La Peste” (The Plague)

“Il y a eu dans le monde autant de pestes comme des guerres. Et pourtant pestes et guerres trouvent les gens toujours aussi dépourvus.” (*)

(*) “There have been as many plagues as wars in history: yet always plagues and wars take people equally by surprise.”
The structure of OpRisk data
A possible mathematical modelling approach for general OpRisk-type of data; however ...
Loss Distribution Approach (LDA) within AMA-Framework, Basel II

<table>
<thead>
<tr>
<th></th>
<th>(\text{RT}_1)</th>
<th>(\ldots)</th>
<th>(\text{RT}_k)</th>
<th>(\ldots)</th>
<th>(\text{RT}_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{BL}_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{BL}_i)</td>
<td>(L_{i,k}^{T+1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{BL}_8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix structured loss data

Very heavy-tailed

Internal, external, expert opinion data

Calculate a risk measure of
A complicated stochastic structure

\[L^{T+1} = \sum_{i=1}^{8} \sum_{k=1}^{7} L_{i,k}^{T+1} \]

\[N_{i,k}^{T+1} = \sum_{\ell=1}^{N_i^{T+1}} X_{i,k}^{\ell} \]

- \(X_{i,k}^{\ell} \): loss severities
- \(N_{i,k}^{T+1} \): loss frequencies

"Insurance Analytics" Chapter 13

together with left-censoring, inter-dependencies, reporting delays (IBNR-like), non-stationarity, insurance cover, extreme heavy-tailedness...
As a consequence, **a lot** has been written on the topic (e.g.):

2015, 900 pages!
OpRisk under Basel IV
In December 2017, the Basel Committee on Banking Supervision introduced the **new standardised** approach for calculating operational risk capital charge, which **replaces all operational risk approaches under Basel II**
Under Basel IV

• A single **non-model based** method using as components BIC, LC and ILM (= Internal Loss Multiplier) = \(f(BIC, LC) \) (see (\(*\)))

• **OpRisk Capital = ILM x BIC**

• 10 years of loss data as basis for LC and hence ILM

• Hence drop Basel II BIA, SA and AMA/LDA Pillar 1 Ansatz

• Move more towards Pillar 2 (≈ SST, Solvency 2, ORSA for insurance)

• **Business Indicator Component (BIC)** via bucket weights

• **Start: January 1, 2022**

• **BCBS**’ aim: improve comparability and reduce complexity in AMA/LDA (<- “Darwinism” did not work!)
(*) Recall: \(\text{OpRisk Capital} = f(BIC, LC) \times BIC \)

\[
f(x, y) = \log \left(\exp(1) - 1 + \left(\frac{15y}{x} \right)^{0.8} \right)
\]

\(x = BIC \)

\(y = LC = \text{“average annual OpRisk loss over last 10 years”} \) (corresponds to risk sensitivity)

\[0.541 \leq f(x, y) \leq 1 \text{ (} 15y = x \text{)}\]

Reference: BIS (15/12/2019) - OPE Calculation of RWA for operational risk - OPE25 - Standardised approach – Version effective as of 01 Jan 2022 - New standardised approach as set out in the December 2017 Basel III publication.
Resulting mathematical problems

Based on joint work with G. Puccetti, R. Wang, L. Rüschendorf, ...
Loss Distribution Approach (LDA) within AMA-Framework, Basel II

<table>
<thead>
<tr>
<th>RT₁</th>
<th>...</th>
<th>RTₖ</th>
<th>...</th>
<th>RT₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLₖ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL₈</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steps:

1. **Superimpose**
 - \(\sum VaR(i) \)
 - \(= VaR^+ \)

2. **VAR(1)**
3. **VAR(i)**
4. **VAR(8)**

Diagram:
- **Matrix structured loss data**
- **Very heavy-tailed**
- **Internal, external, expert opinion data**

Calculation:
- **Calculate a risk measure of**
A general fundamental problem in Quantitative Risk Management (relevant for OpRisk modelling)

- Risk factors: $X = (X_1, \ldots, X_d)$
- Model assumption: $X_i \sim F_i$, F_i known, $i = 1, \ldots, d$
- A financial position $\Psi(X)$
- A risk measure/pricing function: $\rho(\Psi(X))$

Calculate $\rho(\Psi(X))$

As examples we look at $\Psi(X)) = \sum_{i=1}^{d} X_i$ with $\rho = \text{VaR}$ and $\rho = \text{ES}$

and calculate $(\inf, \sup) - \text{bounds}$ under full inter-dependence uncertainty
What do we know about this problem?

1) \(d = 2 \): solved analytically (Makarov)
2) \(d \geq 3 \):
 2.1) homogeneous case \((F_1 = \ldots = F_d)\):
 partial (sharp) analytic results exist for VaR and ES
 2.2) inhomogeneous case:
 no analytic results, but **Rearrangement Algorithm** see website (*) maintained by Giovanni Puccetti
3) From “full inter-dependence uncertainty” to “partial dependence assumptions”: an extensive literature exists

(*) The RA: https://sites.google.com/site/rearrangementalgorithm/home
Bounds in the inhomogeneous case: the Rearrangement Algorithm (RA)

- A fast numerical procedure
- Based on the CM-idea
- Discretization of relevant quantile regions
- \(d\) possibly large (\(\sim 1000\)s)
- Applicable to \(\overline{\text{VaR}}_p\), \(\text{VaR}_p\) and \(\text{ES}_p\)

CM = Complete Mixability (B. Wang, R. Wang (2011), ...)
Example 1: $P(X_i > x) = (1 + x)^{-2}, \ x \geq 0, \ i = 1, \ldots, d$

Bounds on VaR and ES for the sum of d Pareto(2) distributed rvs for $p = 0.999$; VaR^+_p corresponds to the comonotonic case.

<table>
<thead>
<tr>
<th></th>
<th>$d = 8$</th>
<th>$d = 56$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VaR_p</td>
<td>31</td>
<td>53</td>
</tr>
<tr>
<td>ES_p</td>
<td>178</td>
<td>472</td>
</tr>
<tr>
<td>VaR^+_p</td>
<td>245</td>
<td>1715</td>
</tr>
<tr>
<td>$\overline{\text{VaR}}_p$</td>
<td>465</td>
<td>3454</td>
</tr>
<tr>
<td>$\overline{\text{ES}}_p$</td>
<td>498</td>
<td>3486</td>
</tr>
<tr>
<td>$\text{VaR}_p / \text{VaR}^+_p$</td>
<td>1.898</td>
<td>2.014</td>
</tr>
<tr>
<td>$\overline{\text{ES}}_p / \text{VaR}_p$</td>
<td>1.071</td>
<td>1.009</td>
</tr>
</tbody>
</table>

Comonotonic case: sum of marginal VaRs = $d \times$ marginal VaR

Comonotonic case: sum of marginal ESs = $d \times$ marginal ES

\pm factor 2 can be explained: Karamata’s Theorem

\pm factor 1 can be explained (theorem)
Example 2: \(P(\Psi(X) > x) \) estimation as a function of co-variables, for \(x \) typically large -> high-quantile estimation using EVT

Weitzman’s Dismal "Theorem"

• The consequences of "infinite mean models" ...
Weitzman’s Dismal "Theorem"

- Environmental Economist
- Climate Change and the Economics of Catastrophes

The general idea is that under limited conditions concerning the structure of uncertainty and preferences, the expected loss from certain risks such as climate change is infinite, and standard economic analysis cannot be applied. (*)

(*) Quoted from: W. Nordhaus (2009), An analysis of the Dismal Theorem, Cowles Foundation, Yale.
Conclusion
Operational Risk is a highly relevant risk class and needs to be well-understood by all relevant players, including academia.

- Goes well beyond banking and insurance.
- Important intersection with areas like Climate Change and Cyber Risk.
- The Dismal Theorem is relevant through The Economics of Catastrophes.
- Leads to interesting mathematical and statistical questions and demands from researchers a high degree of cross-disciplinary thinking and collaboration.

Unfortunately, the 2007-2008 Financial Crisis did, and the current COVID-19 Pandemic does offer important examples of OpRisk’s relevance!
Thank you and keep well in these difficult times!