Speeding up the Euler scheme for killed diffusions

Umut Çetin
（joint work with J．Hok）
London School of Economics
\section*{BFS One World Seminar}
22 June 2023

Outline of talk

1 Background on linear diffusions

2 Recurrent transformations

3 Explicit Euler-Maruyama schemes for diffusions

4 A new Euler-Maruyama scheme for killed diffusions

5 Numerical experiments

Background on linear diffusions

$■ X$ is a regular diffusion on $(\ell, r) \subset \mathbb{R}$ adapted to right continuous $\left(\mathcal{F}_{t}\right)_{t \geq 0} . \ell$ and r are allowed to be infinite.
■ If any of the boundaries are reached in finite time, the process is killed and sent to the cemetery state, Δ, i.e no reflecting boundaries.
$\square X$ is a regular diffusion on $(\ell, r) \subset \mathbb{R}$ adapted to right continuous $\left(\mathcal{F}_{t}\right)_{t \geq 0} . \ell$ and r are allowed to be infinite.
■ If any of the boundaries are reached in finite time, the process is killed and sent to the cemetery state, Δ, i.e no reflecting boundaries.
\square The law induced by X with $X_{0}=x$ will be denoted by P^{x} as usual, while ζ will correspond to its lifetime, i.e.
$\zeta:=\inf \left\{t \geq 0: X_{t}=\Delta\right\}$.
$\square X$ is a regular diffusion on $(\ell, r) \subset \mathbb{R}$ adapted to right continuous $\left(\mathcal{F}_{t}\right)_{t \geq 0} . \ell$ and r are allowed to be infinite.
■ If any of the boundaries are reached in finite time, the process is killed and sent to the cemetery state, Δ, i.e no reflecting boundaries.
■ The law induced by X with $X_{0}=x$ will be denoted by P^{x} as usual, while ζ will correspond to its lifetime, i.e.
$\zeta:=\inf \left\{t \geq 0: X_{t}=\Delta\right\}$.
■ We shall write $E^{x}[Y]$ to denote expectation of Y with respect to P^{x}. Recall that Markov property means $E^{x}\left[f\left(X_{t+s}\right) \mid \mathcal{F}_{t}\right]=E^{X_{t}}\left[f\left(X_{s}\right)\right]$ while the strong Markov property amounts to $E^{x}\left[f\left(X_{T+s}\right) \mid \mathcal{F}_{T}\right]=E^{X_{T}}\left[f\left(X_{s}\right)\right]$ for all stopping times.
$\square X$ is a regular diffusion on $(\ell, r) \subset \mathbb{R}$ adapted to right continuous $\left(\mathcal{F}_{t}\right)_{t \geq 0} . \ell$ and r are allowed to be infinite.
■ If any of the boundaries are reached in finite time, the process is killed and sent to the cemetery state, Δ, i.e no reflecting boundaries.
■ The law induced by X with $X_{0}=x$ will be denoted by P^{x} as usual, while ζ will correspond to its lifetime, i.e.
$\zeta:=\inf \left\{t \geq 0: X_{t}=\Delta\right\}$.
■ We shall write $E^{x}[Y]$ to denote expectation of Y with respect to P^{x}. Recall that Markov property means $E^{x}\left[f\left(X_{t+s}\right) \mid \mathcal{F}_{t}\right]=E^{X_{t}}\left[f\left(X_{s}\right)\right]$ while the strong Markov property amounts to $E^{x}\left[f\left(X_{T+s}\right) \mid \mathcal{F}_{T}\right]=E^{X_{T}}\left[f\left(X_{S}\right)\right]$ for all stopping times.
■ Diffusion assumption entails X is continuous and strong Markov, while the regularity amounts to $P^{x}\left(T_{y}<\infty\right)>0$ whenever x and y belongs to the open interval (I, r), where $T_{y}:=\inf \left\{t>0: X_{t}=y\right\}$ for $y \in(I, r)$.

11 Brownian motion living on an interval (a, b) and killed as soon as it reaches the boundary.
2δ-dimensional Bessel process on $(0, \infty)$.
3 Solution of a stochastic differential equation:

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t} b\left(X_{s}\right) d s, \quad t<\zeta, \tag{1}
\end{equation*}
$$

where $\zeta:=\inf \left\{t \geq 0: X_{t} \in\{I, r\}\right\}$.

- X is completely determined by its scale function, s, and speed measure, m : s is any increasing function such that $s(X)$ is a local martingale, which leads to
- X is completely determined by its scale function, s, and speed measure, m : s is any increasing function such that $s(X)$ is a local martingale, which leads to

$$
\begin{aligned}
P^{x}\left(T_{a}<T_{b}\right) & =\frac{s(b)-s(x)}{s(b)-s(a)}, \quad 1<a<b<r \\
A f & =\frac{d}{d m} \frac{d f}{d s}, \quad f \in \mathcal{D}(A), \\
P_{t} f(x):=E^{x}\left[f\left(X_{t}\right)\right] & =\int_{1}^{r} f(y) p(t, x, y) m(d y)
\end{aligned}
$$

for any non-negative f that vanishes on the boundary, where p corresponds to the transition density with respect to m. p is symmetric, i.e. $p(t, x, y)=p(t, y, x)$.

- X is completely determined by its scale function, s, and speed measure, m : s is any increasing function such that $s(X)$ is a local martingale, which leads to

$$
\begin{aligned}
P^{x}\left(T_{a}<T_{b}\right) & =\frac{s(b)-s(x)}{s(b)-s(a)}, \quad l<a<b<r \\
A f & =\frac{d}{d m} \frac{d f}{d s}, \quad f \in \mathcal{D}(A), \\
P_{t} f(x):=E^{x}\left[f\left(X_{t}\right)\right] & =\int_{1}^{r} f(y) p(t, x, y) m(d y)
\end{aligned}
$$

for any non-negative f that vanishes on the boundary, where p corresponds to the transition density with respect to m. p is symmetric, i.e. $p(t, x, y)=p(t, y, x)$.

- X is recurrent iff $-s(I)=s(r)=\infty$. Otherwise, it is called transient.
- X is completely determined by its scale function, s, and speed measure, m : s is any increasing function such that $s(X)$ is a local martingale, which leads to

$$
\begin{aligned}
P^{x}\left(T_{a}<T_{b}\right) & =\frac{s(b)-s(x)}{s(b)-s(a)}, \quad l<a<b<r \\
A f & =\frac{d}{d m} \frac{d f}{d s}, \quad f \in \mathcal{D}(A), \\
P_{t} f(x):=E^{x}\left[f\left(X_{t}\right)\right] & =\int_{1}^{r} f(y) p(t, x, y) m(d y)
\end{aligned}
$$

for any non-negative f that vanishes on the boundary, where p corresponds to the transition density with respect to m. p is symmetric, i.e. $p(t, x, y)=p(t, y, x)$.

- X is recurrent iff $-s(I)=s(r)=\infty$. Otherwise, it is called transient.

More on transience

- A consequence (in fact another formulation) of transience is that for any continuous f compactly supported in (I, r)

$$
E^{x} \int_{0}^{\zeta} f\left(X_{t}\right) d t<\infty .
$$

- Consequently, there exists a potential kernel, u, such that

$$
E^{x} \int_{0}^{\zeta} f\left(X_{t}\right) d t=\int_{1}^{r} u(x, y) f(y) m(d y) .
$$

Moreover, u is continuous and for $x \leq y$,

$$
\left.u(x, y)=u(y, x)=\frac{(s(x)-s(\ell))(s(r)-s(y))}{s(r)-s(\ell)}\right) \leq u(y, y) .
$$

In particular,

$$
P^{x}\left(T_{y}<\infty\right)=\frac{u(x, y)}{u(y, y)} .
$$

Explicit Euler-Maruyama schemes for diffusions A new Euler-Maruyama scheme for killed diffusions

Recurrent transformations

Definition 1

Let X be a regular diffusion satisfying（1）and $h:(I, r) \mapsto(0, \infty)$ be a continuous function．(h, M) is said to be a recurrent transform（of X ）if the following are satisfied：
$1 M$ is an adapted process of finite variation．
$2 h(X) M$ is a nonnegative local martingale．
3 There exists a unique weak solution to

$$
\begin{equation*}
\left.X_{t}=x+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t}\left\{b\left(X_{s}\right)+\sigma^{2}\left(X_{s}\right) \frac{h^{\prime}\left(X_{s}\right)}{h\left(X_{s}\right)}\right)\right\} d s \tag{2}
\end{equation*}
$$

4 The（scale）function s_{r} is finite for all $x \in(I, r)$ with

$$
-s_{r}(I+)=s_{r}(r-)=\infty, \text { where }
$$

$$
\begin{equation*}
s_{r}(x):=\int_{c}^{x} \frac{s^{\prime}(y)}{h^{2}(y)} d y, \quad x \in(I, r) \tag{3}
\end{equation*}
$$

- Suppose X is transient, let $y \in(I, r)$ be fixed and consider

$$
\left.h(x):=u(x, y), x \in(I, r), \text { and } M_{t}=\exp \left(\frac{s^{\prime}(y) L_{t}^{y}}{2 u(y, y)}\right)^{1}\right)
$$

■ Suppose X is transient, let $y \in(I, r)$ be fixed and consider

$$
h(x):=u(x, y), x \in(I, r), \text { and } M_{t}=\exp \left(\frac{s^{\prime}(y) L_{t}^{y}}{2 u(y, y)}\right)
$$

■ Then, (h, M) is a recurrent transform of X. In particular, there exists a non-explosive unique weak solution to

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t}\left\{b\left(X_{s}\right)+\sigma^{2}\left(X_{s}\right) \frac{u_{x}\left(X_{s}, y\right)}{u\left(X_{s}, y\right)}\right\} d s \tag{4}
\end{equation*}
$$

- If $R^{h, x}$ denotes the law of the solution and T is an $R^{h, x}-$ a.s. finite stopping time, then for any $F \in \mathcal{F}_{T}$

$$
\begin{equation*}
\underbrace{P^{x}(\zeta>T, F)=u(x, y) E^{h, x}\left[\mathbf{1}_{F} \frac{1}{u\left(X_{T}, y\right)} \exp \left(-\frac{s^{\prime}(y)}{2 u(y, y)} L_{T}^{y}\right)\right] . . ~ . ~ . ~} \tag{5}
\end{equation*}
$$

■ Suppose X is transient, let $y \in(I, r)$ be fixed and consider

$$
h(x):=u(x, y), x \in(I, r), \text { and } M_{t}=\exp \left(\frac{s^{\prime}(y) L_{t}^{y}}{2 u(y, y)}\right)
$$

■ Then, (h, M) is a recurrent transform of X. In particular, there exists a non-explosive unique weak solution to

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t}\left\{b\left(X_{s}\right)+\sigma^{2}\left(X_{s}\right) \frac{u_{x}\left(X_{s}, y\right)}{u\left(X_{s}, y\right)}\right\} d s \tag{4}
\end{equation*}
$$

\square If $R^{h, x}$ denotes the law of the solution and T is an $R^{h, x}$ a.s. finite stopping time, then for any $F \in \mathcal{F}_{T}$
$P^{x}(\zeta>T, F)=u(x, y) E^{h, x}\left[\mathbf{1}_{F} \frac{1}{u\left(X_{T}, y\right)} \exp \left(-\frac{s^{\prime}(y)}{2 u(y, y)} L_{T}^{y}\right)\right]$.

■ Suppose X is a Brownian motion that is killed when hitting 0 or 1. Then,

$$
u(x, y)=x(1-y), 0<x \leq y<1
$$

■ Thus, if we apply the recurrent transform from Example 1 with $y=1 / 2$, we obtain the following SDE:

$$
d X_{t}=d B_{t}+\left\{\frac{1}{X_{t}} \mathbf{1}_{\left[X_{t} \in\left(0, \frac{1}{2}\right]\right]}-\frac{1}{1-X_{t}} \mathbf{1}_{\left[X_{t} \in\left(\frac{1}{2}, 1\right)\right]}\right\} d t
$$

■ Recall that the recurrent transformation implies that the solution to the above SDE never hits 0 or 1 , which is also clear from the SDE representation.

Extension to bounded potentials

■ Let μ be a Borel probability measure on (I,r) such that $\int_{(I, r)}|s(y)| \mu(d y)<\infty$. Suppose X is transient and define

$$
h(x):=\int_{(I, r)} u(x, y) \mu(d y) .
$$

- (h, M) is a recurrent transform of X, where

$$
M_{t}:=\exp \left(\int_{0}^{t} \frac{1}{h\left(X_{s}\right)} d A_{s}\right) \text { and } A_{t}:=\int_{(I, r)} \frac{s^{\prime}(x) L_{t}^{x}}{2} \mu(d x) .
$$

- If $R^{h, x}$ denotes the law of the solution of (2) and T is a stopping time such that $R^{h, x}(T<\infty)=1$, then for any $F \in \mathcal{F}_{T}$
$P^{x}(\zeta>T, F)=h(x) E^{h, x}\left[\mathbf{1}_{F} \frac{1}{h\left(X_{T}\right)} \exp \left(-\int_{0}^{t} \frac{1}{h\left(X_{S}\right)} d A_{s}\right)\right]$,
where $E^{h, x}$ is the expectation operator with respect to the probability measure $R^{h, x}$.

Explicit Euler-Maruyama schemes for diffusions

- Suppose the solution of (1) has infinite lifetime and we are interested in $E^{x}\left[g\left(X_{T}\right)\right]$ for some bounded function g.

■ Suppose the solution of (1) has infinite lifetime and we are interested in $E^{x}\left[g\left(X_{T}\right)\right]$ for some bounded function g.
■ We in general don't know the transition density explicitly, so we must resort to some approximation algorithms.

■ Suppose the solution of (1) has infinite lifetime and we are interested in $E^{x}\left[g\left(X_{T}\right)\right]$ for some bounded function g.
\square We in general don't know the transition density explicitly, so we must resort to some approximation algorithms.
■ The most popular and straightforward algorithm is the explicit Euler-Maruyama scheme:

$$
\begin{equation*}
x_{t_{n}}^{N}=X_{t_{n-1}}^{N}+\underbrace{}_{t_{n}=\frac{n T}{N}, n \in\{0, N\}, X_{0}^{N}=x .} \tag{6}
\end{equation*}
$$

Then, an approximation of $E^{x}\left[g\left(X_{T}\right)\right]$ is found by averaging $g\left(X_{t_{N}}^{N}\right)$ over a sufficiently large number of simulations.

Convergence rate for the explicit scheme

■ A relevant question in above algorithm is 'how fine do we need to discretize in order to get a 'negligible' error for practical purposes?'
■ Note that N is the number of discretizations and the 'weak error' is given by

Convergence rate for the explicit scheme

■ A relevant question in above algorithm is 'how fine do we need to discretize in order to get a 'negligible' error for practical purposes?'
■ Note that N is the number of discretizations and the 'weak error' is given by

$$
e(T)=E^{x}\left[g\left(X_{t_{N}}^{N}\right)\right]-E^{x}\left[g\left(X_{T}\right)\right]
$$

■ Under some regularity conditions on the coefficients of the SDE and g, there exists a bounded function u with bounded derivatives such that $E^{x}\left[g\left(X_{T}\right) \mid \mathcal{F}_{t}\right]=u\left(t, X_{t}\right)$. In particular, $u(T, x)=g(x)$ and

$$
\underbrace{u_{t}+b u_{x}+\frac{1}{2} \sigma^{2} u_{x x}=}
$$

Convergence rate for the explicit scheme

■ Moreover,

$$
\begin{aligned}
e(T)= & E^{x}\left[u\left(T, X_{T}^{N}\right)\right]-E^{x}\left[u\left(T, X_{T}\right)\right] \\
& =E^{x}\left[u\left(T, X_{L}^{N}\right)\right]-u(0, x) \\
& =\sum_{n=0}^{N-1} E^{x}\left[u\left(t_{n+1}, X_{t_{n+1}}^{N}\right)-u\left(t_{n}, X_{t_{n}}^{N}\right)\right]
\end{aligned}
$$

■ With the help of Ito's formula, the regularity conditions imply

$$
\left|E^{x}\left[u\left(t_{n+1}, X_{t_{n+1}}^{N}\right)-u\left(t_{n}, X_{t_{n}}^{N}\right)\right]\right| \leq \frac{K}{N^{2}},
$$

where K is a constant independent of N.

Convergence rate for the explicit scheme

■ Moreover,

$$
\begin{aligned}
e(T)= & E^{x}\left[u\left(T, X_{T}^{N}\right)\right]-E^{x}\left[u\left(T, X_{T}\right)\right] \\
& =E^{x}\left[u\left(T, X_{T}^{N}\right)\right]-u(0, x) \\
& =\sum_{n=0}^{N-1} E^{x}\left[u\left(t_{n+1}, X_{t_{n+1}}^{N}\right)-u\left(t_{n}, X_{t_{n}}^{N}\right)\right]
\end{aligned}
$$

■ With the help of Ito's formula, the regularity conditions imply

$$
\left|E^{x}\left[u\left(t_{n+1}, X_{t_{n+1}}^{N}\right)-u\left(t_{n}, X_{t_{n}}^{N}\right)\right]\right| \leq \frac{K}{N^{2}},
$$

where K is a constant independent of N.
■ Therefore, $|e(T)| \sim O\left(\frac{1}{N}\right)$.

■ The above breaks down if the lifetime is not infinite and we are interested in $E^{x}\left[g\left(X_{T}\right) 1_{[T<\zeta]}\right]$, e.g. the price of a barrier option.

■ The above breaks down if the lifetime is not infinite and we are interested in $E^{x}\left[g\left(X_{T}\right) 1_{[T<\zeta]}\right]$, e.g. the price of a barrier option.

- The reason is that (6) produces a process that can exit (ℓ, r), and the most straightforward explicit scheme would be $E^{x}\left[g\left(X_{T}^{N}\right) 1_{\left[T<_{N}\right]}\right]$, where ζ_{N} is the first time that the discretized process exits (ℓ, r).

■ The above breaks down if the lifetime is not infinite and we are interested in $E^{x}\left[g\left(X_{T}\right) 1_{[T<\zeta]}\right]$, e.g. the price of a barrier option.
■ The reason is that (6) produces a process that can exit (ℓ, r), and the most straightforward explicit scheme would be $E^{x}\left[g\left(X_{T}^{N}\right) 1_{\left[T<_{N}\right]}\right]$, where ζ_{N} is the first time that the discretized process exits (ℓ, r).

- Again one can find a function v vanishing at the accessible boundaries such that such that
$e(T)=E^{x}\left[u\left(T, X_{T}\right)-u\left(T, X_{T}^{N}\right)\right]$. However, u_{x} does not vanish at the boundaries, and thus, the application of a generalized Ito's formula yields local time terms.
■ The local time terms result in a lower weak convergence rate, $O\left(N^{-1 / 2}\right)$ (see Gobet (1999)).

A new Euler-Maruyama scheme for killed diffusions

■ Now suppose the solution of (1) has a finite lifetime and we are interested in $E^{x}\left[g\left(X_{T}\right) 1_{[T<\zeta]}\right]$ for some bounded function g.
\square We can assume without loss of generality that X is on natural scale by considering $s(X)$ if necessary. This amounts to assuming that X is a local martingale, i.e. $b \equiv 0$. Note that there is one-to-one correspondence between X and $s(X)$ since s is strictly increasing.

■ Now suppose the solution of (1) has a finite lifetime and we are interested in $E^{x}\left[g\left(X_{T}\right) \mathbf{1}_{[T<\zeta]}\right]$ for some bounded function g.
■ We can assume without loss of generality that X is on natural scale by considering $s(X)$ if necessary. This amounts to assuming that X is a local martingale, i.e. $b \equiv 0$. Note that there is one-to-one correspondence between X and $s(X)$ since s is strictly increasing.
$■$ Since at least one of the boundaries is accessible, by considering $-X$ if necessary, we may assume ℓ is an accessible boundary. Moreover, by a further translation, we may assume $\ell=0$.

■ Now suppose the solution of (1) has a finite lifetime and we are interested in $E^{x}\left[g\left(X_{T}\right) \mathbf{1}_{[T<\zeta]}\right]$ for some bounded function g.
■ We can assume without loss of generality that X is on natural scale by considering $s(X)$ if necessary. This amounts to assuming that X is a local martingale, i.e. $b \equiv 0$. Note that there is one-to-one correspondence between X and $s(X)$ since s is strictly increasing.
$■$ Since at least one of the boundaries is accessible, by considering $-X$ if necessary, we may assume ℓ is an accessible boundary. Moreover, by a further translation, we may assume $\ell=0$.
■ Given the aforementioned problems with killed diffusions, can recurrent transformations help us to improve the convergence rate?
－Let h be a potential such that $h(x)=\int u(x, y) f(y) m(d y)$ ， where $f \geq 0$ is continuous and $\int f\left(y^{\prime}\right) m(d y)$ as well as $\int f(y) y m(d y)$ are finite．Moreover，$\frac{1}{2} \sigma^{2} h^{\prime \prime}=-f$ ．
－h is bounded，concave，and $\left(h, \exp \left(\int_{0} \frac{f\left(X_{s}\right)}{h\left(X_{s}\right)} d s\right)\right)$ is a recurrent transformation．The resulting law $R^{h, x}$ is the law of the following process：

$$
\begin{equation*}
d X_{t}=\sigma\left(X_{t}\right) d W_{t}+\sigma^{2}\left(X_{t}\right) \frac{h^{\prime}\left(X_{t}\right)}{h\left(X_{t}\right)} d t \tag{7}
\end{equation*}
$$

- Let h be a potential such that $h(x)=\int u(x, y) f(y) m(d y)$, where $f \geq 0$ is continuous and $\int f(y) m(d y)$ as well as $\int f(y) y m(d y)$ are finite. Moreover, $\frac{1}{2} \sigma^{2} h^{\prime \prime}=-f$.
$\square h$ is bounded, concave, and $\left(h, \exp \left(\int_{0} \frac{f\left(X_{s}\right)}{h\left(X_{s}\right)} d s\right)\right)$ is a recurrent transformation. The resulting law $R^{h, x}$ is the law of the following process:

$$
\begin{equation*}
d X_{t}=\sigma\left(X_{t}\right) d W_{t}+\sigma^{2}\left(X_{t}\right) \frac{h^{\prime}\left(X_{t}\right)}{h\left(X_{t}\right)} d t \tag{7}
\end{equation*}
$$

■ In particular,

$$
\left.\frac{E^{x}\left[g\left(X_{T}\right) \mathbf{1}_{[T<\zeta]}\right]}{h(x)}=E^{h, x}\left[\frac{g\left(X_{T}\right)}{h\left(X_{T}\right)} \exp \left(-\int_{0}^{T} \frac{\sigma^{2}\left(X_{s}\right) h^{\prime \prime}\left(X_{s}\right)}{2 h\left(X_{s}\right)} d s\right)\right]\right)
$$

Recurrent transformation via bounded potentials

- Let h be a potential such that $h(x)=\int u(x, y) f(y) m(d y)$, where $f \geq 0$ is continuous and $\int f(y) m(d y)$ as well as $\int f(y) y m(d y)$ are finite. Moreover, $\frac{1}{2} \sigma^{2} h^{\prime \prime}=-f$.
$\square h$ is bounded, concave, and $\left(h, \exp \left(\int_{0} \frac{f\left(X_{s}\right)}{h\left(X_{s}\right)} d s\right)\right)$ is a recurrent transformation. The resulting law $R^{h, x}$ is the law of the following process:

$$
\begin{equation*}
d X_{t}=\sigma\left(X_{t}\right) d W_{t}+\sigma^{2}\left(X_{t}\right) \frac{h^{\prime}\left(X_{t}\right)}{h\left(X_{t}\right)} d t \tag{7}
\end{equation*}
$$

■ In particular,

$$
\frac{E^{x}\left[g\left(X_{T}\right) 1_{[T<\zeta]}\right]}{h(x)}=E^{h, x}\left[\frac{g\left(X_{T}\right)}{h\left(X_{T}\right)} \exp \left(-\int_{0}^{T} \frac{\sigma^{2}\left(X_{s}\right) h^{\prime \prime}\left(X_{s}\right)}{2 h\left(X_{s}\right)} d s\right)\right]
$$

■ Now consider the following explicit scheme

$$
\begin{equation*}
X_{t_{n}}^{N}=X_{t_{n-1}}^{N}+\sigma^{2}\left(X_{t_{n-1}}^{N}\right) \frac{h^{\prime}}{h}\left(X_{t_{n-1}}^{N}\right) \frac{T}{N}+\sigma\left(X_{t_{n-1}}^{N}\right)\left(B_{t_{n}}-B_{t_{n-1}}\right) \tag{8}
\end{equation*}
$$

Explicit scheme for the recurrent transformation

■ If one wants to study the explicit scheme using a PDE method as before, the other object of interest is

$$
\begin{equation*}
v(T-t, x)=E^{h, x}\left[\frac{g\left(X_{t}\right)}{h\left(X_{t}\right)} \exp \left(-\int_{0}^{t} \frac{\sigma^{2}\left(X_{s}\right) h^{\prime \prime}\left(X_{s}\right)}{2 h\left(X_{s}\right)} d s\right)\right], x \in(0, r) \tag{9}
\end{equation*}
$$

■ Although the numerical experiments converge, there are two immediate difficulties in proving the weak convergence rate for (8):
$1 \frac{h^{\prime}}{h}$ is neither bounded nor Lipschitz.

■ If one wants to study the explicit scheme using a PDE method as before, the other object of interest is

$$
\begin{equation*}
v(T-t, x)=E^{h, x}\left[\frac{g\left(X_{t}\right)}{h\left(X_{t}\right)} \exp \left(-\int_{0}^{t} \frac{\sigma^{2}\left(X_{s}\right) h^{\prime \prime}\left(X_{s}\right)}{2 h\left(X_{s}\right)} d s\right)\right], x \in(0, r) \tag{9}
\end{equation*}
$$

■ Although the numerical experiments converge, there are two immediate difficulties in proving the weak convergence rate for (8):
$1 \frac{h^{\prime}}{h}$ is neither bounded nor Lipschitz.
$2 X^{N}$ can exit ($0, r$) with positive probability.
■ The first issue is somewhat controllable as we shall see later by choosing h accordingly.

■ If one wants to study the explicit scheme using a PDE method as before, the other object of interest is

$$
\begin{equation*}
v(T-t, x)=E^{h, x}\left[\frac{g\left(X_{t}\right)}{h\left(X_{t}\right)} \exp \left(-\int_{0}^{t} \frac{\sigma^{2}\left(X_{s}\right) h^{\prime \prime}\left(X_{s}\right)}{2 h\left(X_{s}\right)} d s\right)\right], x \in(0, r) \tag{9}
\end{equation*}
$$

- Although the numerical experiments converge, there are two immediate difficulties in proving the weak convergence rate for (8):
$1 \frac{h^{\prime}}{h}$ is neither bounded nor Lipschitz.
$2 X^{N}$ can exit ($0, r$) with positive probability.
■ The first issue is somewhat controllable as we shall see later by choosing h accordingly.
- However, the second difficulty does not go away and one needs to impose ad hoc boundary specifications.

A drift-implicit scheme

\square As before, let $t_{n}=\frac{n}{N} T$ for $n=0, \ldots, N$. Set $\widehat{X}_{0}=X_{0}$ and proceed inductively by setting

$$
\begin{equation*}
\widehat{X}_{t}=\widehat{X}_{t_{n}}+\sigma\left(\widehat{X}_{t_{n}}\right)\left(W_{t}-W_{t_{n}}\right)+\left(t-t_{n}\right) \sigma^{2}\left(\widehat{X}_{t_{n}}\right) \frac{h^{\prime}\left(\widehat{X}_{t}\right)}{h\left(\widehat{X}_{t}\right)} \tag{10}
\end{equation*}
$$

for $t \in\left(t_{n}, t_{n+1}\right]$ and $n=0, \ldots N-1$.

A drift-implicit scheme

\square As before, let $t_{n}=\frac{n}{N} T$ for $n=0, \ldots, N$. Set $\widehat{X}_{0}=X_{0}$ and proceed inductively by setting

$$
\begin{equation*}
\widehat{X}_{t}=\widehat{X}_{t_{n}}+\sigma\left(\widehat{X}_{t_{n}}\right)\left(W_{t}-W_{t_{n}}\right)+\left(t-t_{n}\right) \sigma^{2}\left(\widehat{X}_{t_{n}}\right) \frac{h^{\prime}\left(\widehat{X}_{t}\right)}{h\left(\widehat{X}_{t}\right)} \tag{10}
\end{equation*}
$$

for $t \in\left(t_{n}, t_{n+1}\right]$ and $n=0, \ldots N-1$.

- Typically implicit schemes requires a small Δt.

A drift-implicit scheme

\square As before, let $t_{n}=\frac{n}{N} T$ for $n=0, \ldots, N$. Set $\widehat{X}_{0}=X_{0}$ and proceed inductively by setting

$$
\begin{equation*}
\widehat{X}_{t}=\widehat{X}_{t_{n}}+\sigma\left(\widehat{X}_{t_{n}}\right)\left(W_{t}-W_{t_{n}}\right)+\left(t-t_{n}\right) \sigma^{2}\left(\widehat{X}_{t_{n}}\right) \frac{h^{\prime}\left(\widehat{X}_{t}\right)}{h\left(\widehat{X}_{t}\right)} \tag{10}
\end{equation*}
$$

for $t \in\left(t_{n}, t_{n+1}\right]$ and $n=0, \ldots N-1$.

- Typically implicit schemes requires a small Δt.
\square However, due to the concavity of h the mapping $H: x \in(0, r) \vdash x-z \frac{h^{\prime}(x)}{h(x)}$ is invertible and has full range for any $z>0$. Indeed, $H^{\mu} \geq 1$.

A drift-implicit scheme

\square As before, let $t_{n}=\frac{n}{N} T$ for $n=0, \ldots, N$. Set $\widehat{X}_{0}=X_{0}$ and proceed inductively by setting

$$
\begin{equation*}
\widehat{X}_{t}=\widehat{X}_{t_{n}}+\sigma\left(\widehat{X}_{t_{n}}\right)\left(W_{t}-W_{t_{n}}\right)+\left(t-t_{n}\right) \sigma^{2}\left(\widehat{X}_{t_{n}}\right) \frac{h^{\prime}\left(\widehat{X}_{t}\right)}{h\left(\widehat{X}_{t}\right)} \tag{10}
\end{equation*}
$$

for $t \in\left(t_{n}, t_{n+1}\right]$ and $n=0, \ldots N-1$.
■ Typically implicit schemes requires a small Δt.
■ However, due to the concavity of h the mapping $H: x \in(0, r) \mapsto x-z \frac{h^{\prime}(x)}{h(x)}$ is invertible and has full range for any $z>0$. Indeed, $H^{\prime} \geq 1$.
■ We shall call this well-defined scheme continuous backward Euler-Maruyama (BEM) scheme.

Suppose that $h \in C_{b}^{2}((0, r),(0, \infty)), h^{(3)}$ exists and satisfies $\left|h^{(3)}\right| \leq K\left(1+h^{-p}\right)$ for some constant K and $p \in[0,1)$. Define $H\left(t_{n}, z ; t, x\right)=x-\sigma^{2}(z)\left(t-t_{n}\right) \frac{h^{\prime}}{h}(x)$. Then for $t \in\left(t_{n}, t_{n+1}\right]$

$$
\begin{align*}
d \widehat{X}_{t} & =\frac{\sigma\left(\widehat{X}_{t_{n}}\right)}{H_{x}\left(t_{n}, \widehat{X}_{t_{n}} t, \widehat{X}_{t}\right)} d W_{t} \\
& +\frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}\left\{\frac{h^{\prime}}{h}\left(\widehat{X}_{t}\right)+\mu\left(t_{n}, \widehat{X}_{t_{n} ;} ; t, \widehat{X}_{t}\right)\right\} d t . \tag{11}
\end{align*}
$$

Suppose that $h \in C_{b}^{2}((0, r),(0, \infty)), h^{(3)}$ exists and satisfies $\left|h^{(3)}\right| \leq K\left(1+h^{-p}\right)$ for some constant K and $p \in[0,1)$. Define $H\left(t_{n}, z ; t, x\right)=x-\sigma^{2}(z)\left(t-t_{n}\right) \frac{h^{\prime}}{h}(x)$. Then for $t \in\left(t_{n}, t_{n+1}\right]$

$$
\begin{align*}
d \widehat{X}_{t} & =\frac{\sigma\left(\widehat{X}_{t_{n}}\right)}{H_{x}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d W_{t} \\
& +\frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}\left\{\frac{h^{\prime}}{h}\left(\widehat{X}_{t}\right)+\mu\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)\right\} d t . \tag{11}
\end{align*}
$$

Consider the sets $O_{1}:=\left\{x: h^{\prime}(x)>0\right\}$ and $O_{2}:=\left\{x: h^{\prime}(x)<0\right\}$. Then

$$
\inf _{x \in \mathcal{O}_{1}} \mu\left(t_{n}, z ; t, x\right) \geq c_{1} \text { and } \sup _{x \in O_{2}} \mu\left(t_{n}, z ; t, x\right) \leq c_{2}
$$

for some constants $c_{1} \leq 0 \leq c_{2}$ that do not depend on t_{n}, t or z.

Speed of weak convergence

■ Consider the expected associated error

$$
E^{n, X_{0}}\left[v\left(T, \widehat{X}_{T}\right) \pi_{N}\right]-v\left(0, X_{0}\right),
$$

where

$$
\pi_{k}(s):=\exp \left(\sum_{n=0}^{k-1} s \sigma^{2}\left(\widehat{X}_{t_{n}}\right) \frac{h^{\prime \prime}\left(\widehat{X}_{t_{n}}\right)}{2 h\left(\widehat{X}_{t_{n}}\right)}\right), k=1, \ldots, N,
$$

with the convention that $\pi_{k}=\pi_{k}\left(T N^{-1}\right)$. Then

$$
\begin{aligned}
& E^{n, X_{0}}[e(N)]=\sum_{n=0}^{N-1} E^{n, X_{0}}\left[v\left(t_{n+1}, \widehat{X}_{t_{n+1}}\right) \pi_{n+1}-v\left(t_{n}, \widehat{X}_{t_{n}}\right) \pi_{n}\right] \\
& =\sum_{n=0}^{N-1} E^{n, X_{0}} \pi_{n}\left(v\left(t_{n+1}, \widehat{X}_{t_{n+1}}\right) \exp \left(T \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) h^{\prime \prime}\left(\widehat{X}_{t_{n}}\right)}{2 N h\left(\widehat{X}_{t_{n}}\right)}\right)-v\left(t_{n}, \widehat{X}_{t_{n}}\right)\right)
\end{aligned}
$$

$$
v\left(t_{n+1}, \widehat{X}_{t_{n+1}}\right) \exp \left(T \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) h^{\prime \prime}\left(\widehat{X}_{t_{n}}\right)}{2 N h\left(\widehat{X}_{t_{n}}\right)}\right)-v\left(t_{n}, \widehat{X}_{t_{n}}\right)=M+I_{1}+I_{2}+l_{3}
$$

where M is a (local) martingale increment,

$$
I_{1}=\int_{t_{n}}^{t_{n+1}} \frac{\pi_{n+1}\left(t-t_{n}\right)}{\pi_{n}\left(t-t_{n}\right)} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) v_{x}\left(t, \widehat{X}_{t}\right) \mu\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t
$$

and I_{1} and I_{2} are similarly complicated integrals containing

$$
\frac{1}{h\left(\widehat{X}_{t}\right)} \text { and } \int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) h^{-p}\left(\widehat{X}_{t}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t
$$

for some $p \in(0,3)$.

Computing inverse moments

- Typical approach in the literature towards computing uniform bounds on moments is via Ito's formula and controlling the (local) martingale terms using BDG inequality.

Computing inverse moments

- Typical approach in the literature towards computing uniform bounds on moments is via Ito's formula and controlling the (local) martingale terms using BDG inequality.
- The inverse moments are especially painful (cf. some works by Alfonsi and Neuenkirch \& Szpruch).

Computing inverse moments

- Typical approach in the literature towards computing uniform bounds on moments is via Ito's formula and controlling the (local) martingale terms using BDG inequality.
- The inverse moments are especially painful (cf. some works by Alfonsi and Neuenkirch \& Szpruch).
- One difficulty with the first approach in the present case is that the local martingale term in the decomposition of, e.g., $h^{-1}(X)$, is a strict local martingale.

Computing inverse moments

- Typical approach in the literature towards computing uniform bounds on moments is via Ito's formula and controlling the (local) martingale terms using BDG inequality.
■ The inverse moments are especially painful (cf. some works by Alfonsi and Neuenkirch \& Szpruch).
- One difficulty with the first approach in the present case is that the local martingale term in the decomposition of, e.g., $h^{-1}(X)$, is a strict local martingale.
- The works of Alfonsi and Neuenkirch \& Szpruch study in particular the inverse moments of

$$
d Y_{t}=d B_{t}+f\left(Y_{t}\right) d t
$$

for a large class of conservative diffusions in a given interval but their conditions on f cannot be satisfied when $f=\frac{h^{\prime}}{h}$ with (h, M) being a recurrent transformation, as it implies the Radon-Nikodym density $\frac{d R}{d P}$ is an R-martingale.

A comparison result

\square Consider the case $r=\infty$, and define A by $A_{0}=0$ and

$$
d A_{t}=\frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t, \quad t \in\left(t_{n}, t_{n+1}\right]
$$

■ Also assume that σ is bounded. Thus, $A_{t} \leq t\left\|\sigma^{2}\right\|_{\infty}$.

A comparison result

\square Consider the case $r=\infty$, and define A by $A_{0}=0$ and

$$
d A_{t}=\frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t, \quad t \in\left(t_{n}, t_{n+1}\right]
$$

\square Also assume that σ is bounded. Thus, $A_{t} \leq t\left\|\sigma^{2}\right\|_{\infty}$.

- Set $\widehat{Y}_{t}=\widehat{X}_{A_{t}^{-1}}$ and recall (11). DD-S Theorem yields

$$
d \widehat{Y}_{t}=d \beta_{t}+\left(\frac{h^{\prime}}{h}\left(\widehat{Y}_{t}\right)+\mu_{t}\right) d t
$$

for some μ_{t} with $\mu_{t} \geq c_{1}$, where β is $\left(\mathcal{F}_{A_{t}^{-1}}\right)$-Brownian motion.

- By comparison, for any non-increasing ϕ,

$$
E^{h, X_{0}}\left(\phi\left(\widehat{X}_{t}\right)\right) \leq E^{h, X_{0}}\left(\phi\left(Y_{A_{t}}\right)\right)
$$

where

$$
\begin{equation*}
Y_{t}=X_{0}+\beta_{t}+\int_{0}^{t}\left(\frac{h^{\prime}}{h}\left(Y_{s}\right)+c_{1}\right) d s \tag{12}
\end{equation*}
$$

■ Since h is increasing when $r=\infty$, the above in particular allows us to bound $E^{h, X_{0}}\left(\frac{1}{h}\left(\widehat{X}_{t}\right)\right)$, uniformly in N, via Y.
■ A difficulty, however, is that we need the moment of $\frac{1}{h(Y)}$ at a rather arbitrary stopping time.

■ Since h is increasing when $r=\infty$, the above in particular allows us to bound $E^{h, X_{0}}\left(\frac{1}{h}\left(\widehat{X}_{t}\right)\right)$, uniformly in N, via Y.
■ A difficulty, however, is that we need the moment of $\frac{1}{h(Y)}$ at a rather arbitrary stopping time.

- The potential theory developed for Schrödinger semigroups comes to our rescue.
■ Let's allow again r to be finite and consider

$$
\begin{equation*}
d Y_{t}=d W_{t}+\left\{\frac{h^{\prime}\left(Y_{t}\right)}{h\left(Y_{t}\right)}+c\right\} d t, \quad t<\zeta(Y) \tag{13}
\end{equation*}
$$

where $c \leq 0$ if $r=\infty$ and is unconstrained otherwise. $\zeta(Y)$ above denotes the first time that Y exits (ℓ, r).

The second key lemma

Let Y be the process defined by（13）with $Y_{0}=X_{0}$ ．Then the following statements are valid：
$1 R^{h, X_{0}}(\zeta(Y)=\infty)=1$ ．

Let Y be the process defined by (13) with $Y_{0}=X_{0}$. Then the following statements are valid:
$1 R^{h, X_{0}}(\zeta(Y)=\infty)=1$.
2 For any stopping time S that is bounded $R^{n, X_{0}}$-a.s. there exists a constant K that does not depend on X_{0} such that

$$
E^{h, X_{0}}\left[\frac{1}{h\left(Y_{S}\right)}\right]<\frac{K}{h\left(X_{0}\right)} .
$$

Let Y be the process defined by (13) with $Y_{0}=X_{0}$. Then the following statements are valid:
$1 R^{h, X_{0}}(\zeta(Y)=\infty)=1$.
2 For any stopping time S that is bounded $R^{n, X_{0}}$-a.s. there exists a constant K that does not depend on X_{0} such that

$$
E^{h, X_{0}}\left[\frac{1}{h\left(Y_{S}\right)}\right]<\frac{K}{h\left(X_{0}\right)} .
$$

3 For any $t>0$ and $p \in[0,1)$

$$
E^{n, X_{0}}\left[\int_{0}^{t} \frac{1}{h^{2+p}\left(Y_{s}\right)} d s\right]<\infty .
$$

Some moment estimates for the BEM scheme

Suppose h satisfies the conditions of the first key lemma and σ is bounded. Let $T>0, p \in[0,1)$ and $t(s)=s-t_{n}$. Then

$$
\sup _{\substack{N, t \leq T}} E^{h, X_{0}}\left(\frac{1}{h}\left(\widehat{X}_{t}\right)+\sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) h^{-2-p}\left(\widehat{X}_{t}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t+\left|\widehat{X}_{t}\right|^{m}\right)<\infty
$$

Some moment estimates for the BEM scheme

Suppose h satisfies the conditions of the first key lemma and σ is bounded. Let $T>0, p \in[0,1)$ and $t(s)=s-t_{n}$. Then

$$
\sup _{\substack{N, t \leq T}} E^{h, X_{0}}\left(\frac{1}{h}\left(\widehat{X}_{t}\right)+\sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) h^{-2-p}\left(\widehat{X}_{t}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t+\left|\widehat{X}_{t}\right|^{m}\right)<\infty
$$

2 Let $p \in[0,1)$ and $m \geq 0$ be an integer. For each n

$$
\begin{aligned}
& E^{n, X_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}}\left|\frac{h^{1-p}\left(\widehat{X}_{t}\right)\left(1+\widehat{X}_{t}^{m}\right) \mu\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}\right| d t \right\rvert\, \mathcal{F}_{n}\right) \\
& \leq \frac{K T}{N} E^{n, x_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)\left(h^{-2-p}\left(\widehat{X}_{t}\right)+\widehat{X}_{t}^{m}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t \right\rvert\, \mathcal{F}_{n}\right) .
\end{aligned}
$$

Some moment estimates for the BEM scheme

Suppose h satisfies the conditions of the first key lemma and σ is bounded. Let $T>0, p \in[0,1)$ and $t(s)=s-t_{n}$. Then

1

$$
\sup _{\substack{N, t \leq T}} E^{h, X_{0}}\left(\frac{1}{h}\left(\widehat{X}_{t}\right)+\sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right) h^{-2-p}\left(\widehat{X}_{t}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t+\left|\widehat{X}_{t}\right|^{m}\right)<\infty
$$

2 Let $p \in[0,1)$ and $m \geq 0$ be an integer. For each n

$$
\begin{aligned}
& E^{n, X_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}}\left|\frac{h^{1-p}\left(\widehat{X}_{t}\right)\left(1+\widehat{X}_{t}^{m}\right) \mu\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)}\right| d t \right\rvert\, \mathcal{F}_{n}\right) \\
& \leq \frac{K T}{N} E^{h, x_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)\left(h^{-2-p}\left(\widehat{X}_{t}\right)+\widehat{X}_{t}^{m}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; t, \widehat{X}_{t}\right)} d t \right\rvert\, \mathcal{F}_{n}\right) .
\end{aligned}
$$

3 If $p \leq \frac{1}{2}$ and $\frac{h^{\prime \prime}}{h^{1-p}}$ is bounded, denoting $\sigma\left(\widehat{X}_{t_{n}}\right)$ by σ_{n},

$$
E^{h, X_{0}} \sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}}\left\{1-e^{t(s) \sigma_{n}^{2} \frac{h^{\prime \prime}}{2 h}\left(\widehat{X}_{t_{n}}\right)}\right\} \frac{\sigma_{n}^{2}\left(h^{-p}\left(\widehat{X}_{s}\right)+\widehat{X}_{s}^{m}\right)}{H_{x}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; s, \widehat{X}_{s}\right)} d s<\frac{K T}{N}
$$

Suppose $\sigma \in C_{b}^{4}\left((0, r), g \in C_{b}^{6}((0, r), \mathbb{R})\right.$ with $g^{(k)}(0)=0$ (and $g^{(k)}(r)=0$ if $\left.r<\infty\right)$ for $k \in\{0,1,2,3,4\}$,

$$
\frac{\left|h^{(k)}\right|}{h}<\frac{K_{h}}{h^{k-2+p}}, \quad k \in\{2,3,4\},
$$

for some K_{h} and $p \in(0,1)$, and recall v from (9).

Suppose $\sigma \in C_{b}^{4}\left((0, r), g \in C_{b}^{6}((0, r), \mathbb{R})\right.$ with $g^{(k)}(0)=0$ (and $g^{(k)}(r)=0$ if $\left.r<\infty\right)$ for $k \in\{0,1,2,3,4\}$,

$$
\frac{\left|h^{(k)}\right|}{h}<\frac{K_{h}}{h^{k-2+p}}, \quad k \in\{2,3,4\},
$$

for some K_{h} and $p \in(0,1)$, and recall v from (9). Then,

$$
\begin{equation*}
v_{t}+\frac{\sigma^{2}}{2} v_{x x}+\sigma^{2} \frac{h^{\prime}}{h} v_{x}=-\sigma^{2} v \frac{h^{\prime \prime}}{2 h} . \tag{14}
\end{equation*}
$$

Moreover, v and v_{t} are uniformly bounded and there exists a constant K such that

$$
\begin{equation*}
\sup _{t \leq T}\left|\frac{\partial^{k}}{\partial x^{k}} v_{t}(t, x)\right|+\sup _{t \leq T}\left|\frac{\partial^{k}}{\partial x^{k}} v(t, x)\right| \leq K h^{2-p-k}(x), \quad k \in\{1,2\} . \tag{15}
\end{equation*}
$$

Hypotheses for the weak convergence estimates

Assumption 1

The functions σ, h and g satisfy the following regularity conditions.
$1 h \in C^{4}((0, r),(0, \infty))$ such that

$$
\frac{\left|h^{(k)}\right|}{h}<\frac{K_{h}}{h^{p+k-2}}, \quad k \in\{2,3,4\},
$$

for some K_{h} and $p \in\left[0, \frac{1}{2}\right]$.
$2 \sigma \in C_{b}^{2}((0, r),(0, \infty))$ is bounded away from 0.
$3 g$ is of polynomial growth with $g(0)=0(g(r)=0$ if $r<\infty)$.
$4 v \in C^{1,4}((0, r), \mathbb{R})$, satisfies (14) and for $k \in\{1,2\}$
$\sup _{t \leq T}\left|\frac{\partial^{k}}{\partial x^{k}} v_{t}(t, x)\right|+\sup _{t \leq T}\left|\frac{\partial^{k}}{\partial x^{k}} v(t, x)\right| \leq K\left(1+x^{m}\right) h^{2-p-k}(x)$,
for some constant K and integer $m \geq 0$.

Back to convergence rate estimates

Under Assumption 1,

$$
\begin{aligned}
& \left|E^{n, X_{0}}\left[I_{1}+I_{2}+I_{3} \mid \mathcal{F}_{n}\right]\right| \\
& \leq K \frac{T}{N} E^{n, X_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}} \frac{\sigma^{2}\left(\widehat{X}_{t_{n}}\right)\left(h^{-2-p}\left(\widehat{X}_{s}\right)+\widehat{X}_{s}^{m}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{n} ; s, \widehat{X}_{s}\right)} d s \right\rvert\, \mathcal{F}_{n}\right) \\
& +E^{n, X_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}}\left(1-\exp \left(t(s) \sigma_{n}^{2} \frac{h^{\prime \prime}}{2 h}\left(\widehat{X}_{t_{n}}\right)\right)\right) \frac{\sigma_{n}^{2}\left(h^{-p}\left(\widehat{X}_{s}\right)+\widehat{X}_{s}^{m}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; s, \widehat{X}_{s}\right)} d s \right\rvert\, \mathcal{F}_{n}\right) \\
& +K \frac{T}{N} E^{n, X_{0}}\left(\left.\int_{t_{n}}^{t_{n+1}} \frac{\sigma\left(\widehat{X}_{t_{n}}\right)^{2}\left(h^{-2}\left(\widehat{X}_{s}\right)+\widehat{X}_{s}^{m}\right)}{H_{X}^{2}\left(t_{n}, \widehat{X}_{t_{n}} ; s, \widehat{X}_{s}\right)} d s \right\rvert\, \mathcal{F}_{n}\right) \leq K \frac{T}{N}
\end{aligned}
$$

Numerical experiments

■ We shall apply our scheme to a down-and-out option in the Black-Scholes model and a double barrier option in hyperbolic local volatility model, where the local volatility is given by

$$
\sigma(x)=\nu\left\{\frac{\left(1-\beta+\beta^{2}\right)}{\beta} x+\frac{(\beta-1)}{\beta}\left(\sqrt{x^{2}+\beta^{2}(1-x)^{2}}-\beta\right)\right\}
$$

■ To achieve σ away from zero on (ℓ, r), we shall consider log price in the Black-Scholes model.
■ $h(x)=e^{-\ell}-e^{-x}$ in the one sided case whereas $h(x)=(x-\ell)(r-x)$ in the double barrier case. Neither h satisfies the condition of Assumption 1.

Single barrier put in Black-Scholes

Figure: Absolute discrepancy between the benchmark price for ATM down-and-out put and those calculated with different numerical schemes when $S_{0}=1, K=1, T=1$ year, $I=\log (b=0.8), r=+\infty$ and $\sigma=20 \%$.

ATM double barrier call

Figure: Absolute discrepancy between the benchmark price and those calculated by different numerical schemes for ATM double barrier call when $S_{0}=1, K=0.9, \nu=20 \%, \beta=0.5, T=1$ year, $b=0.85, B=1.25$.

OTM double barrier call in HLV

OTM double barrier call

Figure: Absolute discrepancy between the benchmark price and those calculated by different numerical schemes for OTM double barrier call when $S_{0}=1, K=0.9, \nu=20 \%, \beta=0.5, T=1$ year, $b=0.85, B=1.25$.

ITM double barrier call

Figure: Absolute discrepancy between the benchmark price and those calculated by different numerical schemes for ITM double barrier call when $S_{0}=1, K=0.9, \nu=20 \%, \beta=0.5, T=1$ year, $b=0.8, B=1.15$.

Figure: Absolute discrepancy between the benchmark price and those calculated by different numerical schemes for ATM double barrier call when $S_{0}=1, K=1, \nu=20 \%, \beta=0.5, T=1$ year, $b=0.8, B=1.3$.

■ Introduced a novel drift-implicit scheme for killed diffusions that brings the weak convergence rate back to $O(1 / N)$.

■ Introduced a novel drift-implicit scheme for killed diffusions that brings the weak convergence rate back to $O(1 / N)$.
■ Moment estimates are calculated using potential theory.

■ Introduced a novel drift-implicit scheme for killed diffusions that brings the weak convergence rate back to $O(1 / N)$.
$■$ Moment estimates are calculated using potential theory.
■ The earlier drift-implicit works that rely on BDG type inequalities for moment estimates impose restrictions on h^{\prime} / h, which in turn imply $\frac{1}{h(X)} \exp \left(\frac{1}{2} \int_{0} \frac{f\left(X_{s}\right)}{h\left(X_{s}\right)} d s\right)$ is a $R^{h, x}$-martingale. This is not possible.
■ Numerical experiments are consistent with theoretical results despite h not satisfying the stated conditions.

1 A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, M. C. Methods and App., 11 (2005), pp. 355-384.

2 U. Çetin, Diffusion transformations, Black-Scholes equation and optimal stopping, AAP., 28 (2018), pp. 3102-3151.
3 U. Çetin and J. Hok. Speeding up the Euler scheme for killed diffusions.
4 E. Gobet, Weak approximation of killed diffusion using euler schemes, SPA, 87 (2000), pp. 167-197.
5 A. Neuenkirch and L. Szpruch, First order strong approximations of scalar SDEs defined in a domain, Numerische Mathematik, 128 (2014), pp. 103-136.
6 D. Siegmund and Y.-S. Yuh, Brownian approximations to first passage probabilities, PTRF, 59 (1982), pp. 239-248.

