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Setup
X is a regular diffusion on (ℓ, r) ⊂ R adapted to right
continuous (Ft)t≥0. ℓ and r are allowed to be infinite.
If any of the boundaries are reached in finite time, the
process is killed and sent to the cemetery state, ∆, i.e no
reflecting boundaries.

The law induced by X with X0 = x will be denoted by Px as
usual, while ζ will correspond to its lifetime, i.e.
ζ := inf{t ≥ 0 : Xt = ∆}.
We shall write Ex [Y ] to denote expectation of Y with
respect to Px . Recall that Markov property means
Ex [f (Xt+s)|Ft ] = EXt [f (Xs)] while the strong Markov
property amounts to Ex [f (XT+s)|FT ] = EXT [f (Xs)] for all
stopping times.
Diffusion assumption entails X is continuous and strong
Markov, while the regularity amounts to Px(Ty < ∞) > 0
whenever x and y belongs to the open interval (l , r), where
Ty := inf{t > 0 : Xt = y} for y ∈ (l , r).
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Examples

1 Brownian motion living on an interval (a,b) and killed as
soon as it reaches the boundary.

2 δ-dimensional Bessel process on (0,∞).
3 Solution of a stochastic differential equation:

Xt = X0 +

∫ t

0
σ(Xs)dBs +

∫ t

0
b(Xs)ds, t < ζ, (1)

where ζ := inf{t ≥ 0 : Xt ∈ {l , r}}.



Scale, speed, etc.

X is completely determined by its scale function, s, and
speed measure, m: s is any increasing function such that
s(X ) is a local martingale, which leads to

Px(Ta < Tb) =
s(b)− s(x)
s(b)− s(a)

, l < a < b < r

Af =
d

dm
df
ds

, f ∈ D(A),

Pt f (x) := Ex [f (Xt)] =

∫ r

l
f (y)p(t , x , y)m(dy)

for any non-negative f that vanishes on the boundary,
where p corresponds to the transition density with respect
to m. p is symmetric, i.e. p(t , x , y) = p(t , y , x).
X is recurrent iff −s(l) = s(r) = ∞. Otherwise, it is called
transient.
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More on transience
A consequence (in fact another formulation) of transience
is that for any continuous f compactly supported in (l , r)

Ex
∫ ζ

0
f (Xt)dt < ∞.

Consequently, there exists a potential kernel, u, such that

Ex
∫ ζ

0
f (Xt)dt =

∫ r

l
u(x , y)f (y)m(dy).

Moreover, u is continuous and for x ≤ y ,

u(x , y) = u(y , x) =
(s(x)− s(ℓ))(s(r)− s(y))

s(r)− s(ℓ)
) ≤ u(y , y).

In particular,

Px(Ty < ∞) =
u(x , y)
u(y , y)

.
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Recurrent transformations (Çetin (2018)

Definition 1
Let X be a regular diffusion satisfying (1) and h : (l , r) 7→ (0,∞)
be a continuous function. (h,M) is said to be a recurrent
transform (of X ) if the following are satisfied:

1 M is an adapted process of finite variation.
2 h(X )M is a nonnegative local martingale.
3 There exists a unique weak solution to

Xt = x +

∫ t

0
σ(Xs)dBs +

∫ t

0

{
b(Xs) + σ2(Xs)

h′(Xs)

h(Xs)

}
ds.

(2)
4 The (scale) function sr is finite for all x ∈ (l , r) with

−sr (l+) = sr (r−) = ∞, where

sr (x) :=
∫ x

c

s′(y)
h2(y)

dy , x ∈ (l , r), (3)



"Example" 1
Suppose X is transient, let y ∈ (l , r) be fixed and consider

h(x) := u(x , y), x ∈ (l , r), and Mt = exp

(
s′(y)Ly

t
2u(y , y)

)
.

Then, (h,M) is a recurrent transform of X . In particular,
there exists a non-explosive unique weak solution to

Xt = x +

∫ t

0
σ(Xs)dBs +

∫ t

0

{
b(Xs) + σ2(Xs)

ux(Xs, y)
u(Xs, y)

}
ds.

(4)
If Rh,x denotes the law of the solution and T is an Rh,x -a.s.
finite stopping time, then for any F ∈ FT

Px(ζ > T ,F ) = u(x , y)Eh,x
[
1F

1
u(XT , y)

exp

(
− s′(y)

2u(y , y)
Ly

T

)]
.

(5)
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An example

Suppose X is a Brownian motion that is killed when hitting
0 or 1. Then,

u(x , y) = x(1 − y), 0 < x ≤ y < 1.

Thus, if we apply the recurrent transform from Example 1
with y = 1/2, we obtain the following SDE:

dXt = dBt +

{
1
Xt

1[Xt∈(0, 1
2 ]]

− 1
1 − Xt

1[Xt∈( 1
2 ,1)]

}
dt .

Recall that the recurrent transformation implies that the
solution to the above SDE never hits 0 or 1, which is also
clear from the SDE representation.



Extension to bounded potentials
Let µ be a Borel probability measure on (l , r) such that∫
(l,r) |s(y)|µ(dy) < ∞. Suppose X is transient and define

h(x) :=
∫
(l,r)

u(x , y)µ(dy).

(h,M) is a recurrent transform of X , where

Mt := exp

(∫ t

0

1
h(Xs)

dAs

)
and At :=

∫
(l,r)

s′(x)Lx
t

2
µ(dx).

If Rh,x denotes the law of the solution of (2) and T is a
stopping time such that Rh,x(T < ∞) = 1, then for any
F ∈ FT

Px(ζ > T ,F ) = h(x)Eh,x
[
1F

1
h(XT )

exp

(
−
∫ t

0

1
h(Xs)

dAs

)]
,

where Eh,x is the expectation operator with respect to the
probability measure Rh,x .
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The case of no-killing

Suppose the solution of (1) has infinite lifetime and we are
interested in Ex [g(XT )] for some bounded function g.

We in general don’t know the transition density explicitly, so
we must resort to some approximation algorithms.
The most popular and straightforward algorithm is the
explicit Euler-Maruyama scheme:

X N
tn = X N

tn−1
+ b(X N

tn−1
)
T
N

+ σ(X N
tn−1

)(Btn − Btn−1),

tn =
nT
N

,n ∈ {0,N}, X N
0 = x .

(6)

Then, an approximation of Ex [g(XT )] is found by averaging
g(X N

tN ) over a sufficiently large number of simulations.
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Convergence rate for the explicit scheme

A relevant question in above algorithm is ‘how fine do we
need to discretize in order to get a ‘negligible’ error for
practical purposes?’
Note that N is the number of discretizations and the ‘weak
error’ is given by

e(T ) = Ex [g(X N
tN )]− Ex [g(XT )].

Under some regularity conditions on the coefficients of the
SDE and g, there exists a bounded function u with
bounded derivatives such that Ex [g(XT )|Ft ] = u(t ,Xt). In
particular, u(T , x) = g(x) and

ut + bux +
1
2
σ2uxx = 0.
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Convergence rate for the explicit scheme

Moreover,

e(T ) =Ex [u(T ,X N
T )]− Ex [u(T ,XT )]

= Ex [u(T ,X N
T )]− u(0, x)

=
N−1∑
n=0

Ex [u(tn+1,X N
tn+1

)− u(tn,X N
tn )]

With the help of Ito’s formula, the regularity conditions
imply ∣∣∣Ex [u(tn+1,X N

tn+1
)− u(tn,X N

tn )]
∣∣∣ ≤ K

N2 ,

where K is a constant independent of N.

Therefore, |e(T )| ∼ O( 1
N ).
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The case of killed diffusions

The above breaks down if the lifetime is not infinite and we
are interested in Ex [g(XT )1[T<ζ]], e.g. the price of a barrier
option.

The reason is that (6) produces a process that can exit
(ℓ, r), and the most straightforward explicit scheme would
be Ex [g(X N

T )1[T<ζN ]], where ζN is the first time that the
discretized process exits (ℓ, r).
Again one can find a function v vanishing at the accessible
boundaries such that such that
e(T ) = Ex [u(T ,XT )− u(T ,X N

T )]. However, ux does not
vanish at the boundaries, and thus, the application of a
generalized Ito’s formula yields local time terms.
The local time terms result in a lower weak convergence
rate, O(N−1/2) (see Gobet (1999)).
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The case of killing

Now suppose the solution of (1) has a finite lifetime and we
are interested in Ex [g(XT )1[T<ζ]] for some bounded
function g.
We can assume without loss of generality that X is on
natural scale by considering s(X ) if necessary. This
amounts to assuming that X is a local martingale, i.e.
b ≡ 0. Note that there is one-to-one correspondence
between X and s(X ) since s is strictly increasing.

Since at least one of the boundaries is accessible, by
considering −X if necessary, we may assume ℓ is an
accessible boundary. Moreover, by a further translation, we
may assume ℓ = 0.
Given the aforementioned problems with killed diffusions,
can recurrent transformations help us to improve the
convergence rate?
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Recurrent transformation via bounded potentials
Let h be a potential such that h(x) =

∫
u(x , y)f (y)m(dy),

where f ≥ 0 is continuous and
∫

f (y)m(dy) as well as∫
f (y)ym(dy) are finite. Moreover, 1

2σ
2h′′ = −f .

h is bounded, concave, and (h, exp(
∫

0
f (Xs)
h(Xs)

ds)) is a
recurrent transformation. The resulting law Rh,x is the law
of the following process:

dXt = σ(Xt)dWt + σ2(Xt)
h′(Xt)

h(Xt)
dt . (7)

In particular,

Ex [g(XT )1[T<ζ]]

h(x)
= Eh,x

[
g(XT )

h(XT )
exp

(
−
∫ T

0

σ2(Xs)h′′(Xs)

2h(Xs)
ds
)]

Now consider the following explicit scheme

X N
tn = X N

tn−1
+ σ2(X N

tn−1
)
h′

h
(X N

tn−1
)
T
N

+ σ(X N
tn−1

)(Btn − Btn−1).

(8)
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h
(X N

tn−1
)
T
N

+ σ(X N
tn−1

)(Btn − Btn−1).

(8)



Explicit scheme for the recurrent transformation

If one wants to study the explicit scheme using a PDE
method as before, the other object of interest is

v(T−t , x) = Eh,x
[

g(Xt)

h(Xt)
exp

(
−
∫ t

0

σ2(Xs)h′′(Xs)

2h(Xs)
ds
)]

, x ∈ (0, r).

(9)
Although the numerical experiments converge, there are
two immediate difficulties in proving the weak convergence
rate for (8):

1 h′

h is neither bounded nor Lipschitz.

2 X N can exit (0, r) with positive probability.

The first issue is somewhat controllable as we shall see
later by choosing h accordingly.
However, the second difficulty does not go away and one
needs to impose ad hoc boundary specifications.
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A drift-implicit scheme

As before, let tn = n
N T for n = 0, . . . ,N. Set X̂0 = X0 and

proceed inductively by setting

X̂t = X̂tn + σ(X̂tn)(Wt − Wtn) + (t − tn)σ2(X̂tn)
h′(X̂t)

h(X̂t)
(10)

for t ∈ (tn, tn+1] and n = 0, . . .N − 1.

Typically implicit schemes requires a small ∆t .
However, due to the concavity of h the mapping
H : x ∈ (0, r) 7→ x − z h′(x)

h(x) is invertible and has full range
for any z > 0. Indeed, H ′ ≥ 1.
We shall call this well-defined scheme continuous
backward Euler-Maruyama (BEM) scheme.
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The first key lemma

Suppose that h ∈ C2
b((0, r), (0,∞)), h(3) exists and satisfies

|h(3)| ≤ K (1 + h−p) for some constant K and p ∈ [0,1). Define
H(tn, z; t , x) = x − σ2(z)(t − tn)h′

h (x). Then for t ∈ (tn, tn+1]

dX̂t =
σ(X̂tn)

Hx(tn, X̂tn ; t , X̂t)
dWt

+
σ2(X̂tn)

H2
x (tn, X̂tn ; t , X̂t)

{
h′

h
(X̂t) + µ(tn, X̂tn ; t , X̂t)

}
dt .

(11)

Consider the sets O1 := {x : h′(x) > 0} and
O2 := {x : h′(x) < 0}. Then

inf
x∈O1

µ(tn, z; t , x) ≥ c1 and sup
x∈O2

µ(tn, z; t , x) ≤ c2

for some constants c1 ≤ 0 ≤ c2 that do not depend on tn, t or z.
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Speed of weak convergence
Consider the expected associated error

Eh,X0
[
v(T , X̂T )πN

]
− v(0,X0),

where

πk (s) := exp

(
k−1∑
n=0

sσ2(X̂tn)
h′′(X̂tn)

2h(X̂tn)

)
, k = 1, . . . ,N,

with the convention that πk = πk (TN−1). Then

Eh,X0 [e(N)] =
N−1∑
n=0

Eh,X0
[
v(tn+1, X̂tn+1)πn+1 − v(tn, X̂tn)πn

]

=
N−1∑
n=0

Eh,X0πn

(
v(tn+1, X̂tn+1) exp

(
T
σ2(X̂tn)h′′(X̂tn)

2Nh(X̂tn)

)
− v(tn, X̂tn)

)



v(tn+1, X̂tn+1) exp
(

T
σ2(X̂tn)h′′(X̂tn)

2Nh(X̂tn)

)
−v(tn, X̂tn) = M+I1+I2+I3,

where M is a (local) martingale increment,

I1 =

∫ tn+1

tn

πn+1(t − tn)
πn(t − tn)

σ2(X̂tn)vx(t , X̂t)µ(tn, X̂tn ; t , X̂t)

H2
x (tn, X̂tn ; t , X̂t)

dt

and I1 and I2 are similarly complicated integrals containing

1

h(X̂t)
and

∫ tn+1

tn

σ2(X̂tn)h−p(X̂t)

H2
x (tn, X̂tn ; t , X̂t)

dt

for some p ∈ (0,3).



Computing inverse moments
Typical approach in the literature towards computing
uniform bounds on moments is via Ito’s formula and
controlling the (local) martingale terms using BDG
inequality.

The inverse moments are especially painful (cf. some
works by Alfonsi and Neuenkirch & Szpruch).
One difficulty with the first approach in the present case is
that the local martingale term in the decomposition of, e.g.,
h−1(X ), is a strict local martingale.
The works of Alfonsi and Neuenkirch & Szpruch study in
particular the inverse moments of

dYt = dBt + f (Yt)dt

for a large class of conservative diffusions in a given
interval but their conditions on f cannot be satisfied when
f = h′

h with (h,M) being a recurrent transformation, as it
implies the Radon-Nikodym density dR

dP is an R-martingale.
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A comparison result
Consider the case r = ∞, and define A by A0 = 0 and

dAt =
σ2(X̂tn)

H2
x (tn, X̂tn ; t , X̂t)

dt , t ∈ (tn, tn+1].

Also assume that σ is bounded. Thus, At ≤ t∥σ2∥∞.

Set Ŷt = X̂A−1
t

and recall (11). DD-S Theorem yields

dŶt = dβt +

(
h′

h
(Ŷt) + µt

)
dt ,

for some µt with µt ≥ c1, where β is (FA−1
t
)-Brownian

motion.
By comparison, for any non-increasing ϕ,

Eh,X0(ϕ(X̂t)) ≤ Eh,X0(ϕ(YAt )),

where

Yt = X0 + βt +

∫ t

0

(
h′

h
(Ys) + c1

)
ds. (12)
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Inverse moments

Since h is increasing when r = ∞, the above in particular
allows us to bound Eh,X0(1

h (X̂t)), uniformly in N, via Y .

A difficulty, however, is that we need the moment of 1
h(Y ) at

a rather arbitrary stopping time.

The potential theory developed for Schrödinger
semigroups comes to our rescue.
Let’s allow again r to be finite and consider

dYt = dWt +

{
h′(Yt)

h(Yt)
+ c
}

dt , t < ζ(Y ), (13)

where c ≤ 0 if r = ∞ and is unconstrained otherwise. ζ(Y )
above denotes the first time that Y exits (ℓ, r).
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The second key lemma

Let Y be the process defined by (13) with Y0 = X0. Then the
following statements are valid:

1 Rh,X0(ζ(Y ) = ∞) = 1.

2 For any stopping time S that is bounded Rh,X0-a.s. there
exists a constant K that does not depend on X0 such that

Eh,X0

[
1

h(YS)

]
<

K
h(X0)

.

3 For any t > 0 and p ∈ [0,1)

Eh,X0

[∫ t

0

1
h2+p(Ys)

ds
]
< ∞.
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Some moment estimates for the BEM scheme
Suppose h satisfies the conditions of the first key lemma and σ
is bounded. Let T > 0, p ∈ [0,1) and t(s) = s − tn. Then

1

sup
N,

t≤T

Eh,X0

(
1
h
(X̂t) +

N−1∑
n=0

∫ tn+1

tn

σ2(X̂tn)h−2−p(X̂t)

H2
x (tn, X̂tn ; t , X̂t)

dt + |X̂t |m
)

< ∞

2 Let p ∈ [0,1) and m ≥ 0 be an integer. For each n

Eh,X0

(∫ tn+1

tn

∣∣∣∣h1−p(X̂t)(1 + X̂ m
t )µ(tn, X̂tn ; t , X̂t)

H2
x (tn, X̂tn ; t , X̂t)

∣∣∣∣dt
∣∣∣Fn

)
≤ KT

N
Eh,X0

(∫ tn+1

tn

σ2(X̂tn)(h−2−p(X̂t) + X̂ m
t )

H2
x (tn, X̂tn ; t , X̂t)

dt
∣∣Fn

)
.

3 If p ≤ 1
2 and h′′

h1−p is bounded, denoting σ(X̂tn) by σn,

Eh,X0

N−1∑
n=0

∫ tn+1

tn

{
1 − et(s)σ2

n
h′′
2h (X̂tn )

} σ2
n(h−p(X̂s) + X̂ m

s )

H2
x (tn, X̂tn ; s, X̂s)

ds <
KT
N

.
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Relevant PDE estimates

Suppose σ ∈ C4
b((0, r), g ∈ C6

b((0, r),R) with g(k)(0) = 0 (and
g(k)(r) = 0 if r < ∞) for k ∈ {0,1,2,3,4},

|h(k)|
h

<
Kh

hk−2+p , k ∈ {2,3,4},

for some Kh and p ∈ (0,1), and recall v from (9).

Then,

vt +
σ2

2
vxx + σ2 h′

h
vx = −σ2v

h′′

2h
. (14)

Moreover, v and vt are uniformly bounded and there exists a
constant K such that

sup
t≤T

∣∣∣ ∂k

∂xk vt(t , x)
∣∣∣+sup

t≤T

∣∣∣ ∂k

∂xk v(t , x)
∣∣∣ ≤ Kh2−p−k (x), k ∈ {1,2}.

(15)
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Hypotheses for the weak convergence estimates

Assumption 1

The functions σ, h and g satisfy the following regularity
conditions.

1 h ∈ C4((0, r), (0,∞)) such that

|h(k)|
h

<
Kh

hp+k−2 , k ∈ {2,3,4},

for some Kh and p ∈ [0, 1
2 ].

2 σ ∈ C2
b((0, r), (0,∞)) is bounded away from 0.

3 g is of polynomial growth with g(0) = 0 (g(r) = 0 if r < ∞).
4 v ∈ C1,4((0, r),R), satisfies (14) and for k ∈ {1,2}

sup
t≤T

∣∣∣ ∂k

∂xk vt(t , x)
∣∣∣+ sup

t≤T

∣∣∣ ∂k

∂xk v(t , x)
∣∣∣ ≤ K (1 + xm)h2−p−k (x),

for some constant K and integer m ≥ 0.



Back to convergence rate estimates

Under Assumption 1,∣∣∣Eh,X0 [I1 + I2 + I3|Fn]
∣∣∣

≤ K
T
N

Eh,X0

(∫ tn+1

tn

σ2(X̂tn)(h−2−p(X̂s) + X̂ m
s )

H2
x (tn, X̂tn ; s, X̂s)

ds
∣∣Fn

)
+ Eh,X0

(∫ tn+1

tn

(
1 − exp

(
t(s)σ2

n
h′′

2h
(X̂tn)

)) σ2
n(h−p(X̂s) + X̂ m
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Go to Moment Estimates
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Numerical experiments

Umut Çetin (joint work with J. Hok) Barrier option simulation



Numerical pricing of barrier options

We shall apply our scheme to a down-and-out option in the
Black-Scholes model and a double barrier option in
hyperbolic local volatility model, where the local volatility is
given by

σ(x) = ν
{(1 − β + β2)

β
x+

(β − 1)
β

(√
x2 + β2(1 − x)2−β

)}
.

To achieve σ away from zero on (ℓ, r), we shall consider
log price in the Black-Scholes model.
h(x) = e−ℓ − e−x in the one sided case whereas
h(x) = (x − ℓ)(r − x) in the double barrier case. Neither h
satisfies the condition of Assumption 1.



Single barrier put in Black-Scholes

Figure: Absolute discrepancy between the benchmark price for ATM
down-and-out put and those calculated with different numerical
schemes when S0 = 1, K = 1, T = 1 year, l = log(b = 0.8), r = +∞
and σ = 20%.



ATM double barrier call in HLV

Figure: Absolute discrepancy between the benchmark price and
those calculated by different numerical schemes for ATM double
barrier call when S0 = 1, K = 0.9, ν = 20%, β = 0.5, T = 1 year,
b = 0.85, B = 1.25.



OTM double barrier call in HLV

Figure: Absolute discrepancy between the benchmark price and
those calculated by different numerical schemes for OTM double
barrier call when S0 = 1, K = 0.9, ν = 20%, β = 0.5, T = 1 year,
b = 0.85, B = 1.25.



ITM double barrier call in HLV

Figure: Absolute discrepancy between the benchmark price and
those calculated by different numerical schemes for ITM double
barrier call when S0 = 1, K = 0.9, ν = 20%, β = 0.5, T = 1 year,
b = 0.8, B = 1.15.



ATM double barrier call in HLV

Figure: Absolute discrepancy between the benchmark price and
those calculated by different numerical schemes for ATM double
barrier call when S0 = 1, K = 1, ν = 20%, β = 0.5, T = 1 year,
b = 0.8, B = 1.3.



Conclusion

Introduced a novel drift-implicit scheme for killed diffusions
that brings the weak convergence rate back to O(1/N).

Moment estimates are calculated using potential theory.
The earlier drift-implicit works that rely on BDG type
inequalities for moment estimates impose restrictions on
h′/h, which in turn imply 1

h(X) exp(
1
2

∫
0

f (Xs)
h(Xs)

ds) is a
Rh,x -martingale. This is not possible.
Numerical experiments are consistent with theoretical
results despite h not satisfying the stated conditions.
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