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The Main Object

A stochastic partial differential equation (SPDE)

=

PDE + random noise

du(t, x)− θuxx(t, x) dt = σ dW (t, x), x ∈ [0, 1], t ≥ 0.

Adding noise may come from:

♢ passing to the limit from microscopic to mesoscopic/macroscopic

level;

♢ model misspecification, i.e. a PDE is an approximated/ideal model;

♢ byproduct of other problems; e.g. filtering;

♢ reasonable modeling tool; e.g. finance, economics;

♢ other.

Note: In our terms, SPDEs ̸= ‘random PDEs’, where usually the focus is on random

coefficients, random initial or/and boundary data.

Ig. Cialenco ⋄ ⋄ ⋄ Illinois Tech Oct 2023 ⋄ ⋄ ⋄ Slide 2



SPDEs in Finance: Interest rates modeling

Heath, Jarrow, Morton (HJM) model [HJM92] model for the

instantaneous forward rate f(t, T ) = −∂ logP (t, T )/∂T . Using Musiela

parametrization f(t, x) := f(t, t+ x), it reads

df(t, x) =

(
∂

∂x
f(t, x) + α(t, x)

)
dt+

∞∑

j=1

σi(t, x) dwi(t),

where wi are independent 1D Brownian motions, and α given by

no-arbitrage condition

α(t, x) =

∞∑

i=1

σ(t, x)

(∫ ∞

0
σi(t, x) du+ λi(t)

)
.

Later Brace, Gatarek, Musiela (BGM) [BGM97, Bra08]; see also

[Kus00, BSC+99, SCS01], and Filipovic [Fil01].
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SPDEs in Finance: Interest rates modeling

Using PCA approach Cont [Con05], proposes to decompose

f(t, x) = r(t) + s(t)[y(x) + u(t, x)],

where r is the short rate, s the spread, y a deterministic function, and u

is the deformation process, and postulated to follow the dynamics

du(t, x) = (κuxx(t, x) + ux(t, x)) dt+ σW (t, x), x ∈ [0, 1], t ≥ 0,

where κ, σ > 0 model parameters. A parabolic SPDE.

See also [BK01] for SPDEs in pricing interest rate derivatives.

More details on SPDEs in interest rates models in [CT06].
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SPDEs in Finance: forward utility measures

Musiela and Zariphopoulou [MZ10a] introduce the notion of forward

utilities, in the context of optimal investment.

Assume that Xπ
t is the wealth process corresponding to a self-financing

admissible trading strategy π, in a standard Ito diffusion type market

model. A forward utility measures U(t, x) is a function such that the

optimal investment is consistent across all times, U(t,Xπ
t ) is

super-martingale for any admissible π ∈ A, and martingale for the

optimal strategy π∗.

Then, U solves the following (nonlinear) SPDE

dU(t, x) =
1

2

|Ux(t, x)λt + σtσ
+
t a(t, x)|2

Uxx(t, x)
+ a(t, x) dWt

See also [MZ10b, KOZ18, NZ19], and many more.
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SPDEs in Finance: Limit Order Book

Cont and Muller [CM21]. Let V (t, p) denote the volume in LOB at time

t and price p. For a small bid-ask spread and small tick size δ, LOB can

be described by a continuum approximation through its density v(t; p)

representing the volume of orders per unit price: V (t; p) ≃ v(t; p)δ. With

St being the mid-price, define the centered order book density

u(t, x) = v(t, St + x).

Following some heuristics derivations, the SPDE for u(t, x) is derived

du = [ηa∆u+ βa∇u+ αau+ fa] dt+ σau dW
a(t), x ∈ (0, L)

du = [ηb∆u+ βb∇u+ αbu+ fb] dt+ σbudW
b(t), x ∈ (−L, 0)

u(t, x) ≤ 0, x < 0, u(t, x) ≥ 0, x > 0

u(t, 0+) = u(t, 0−) = 0, u(t,−L) = u(t, L) = 0.

See also Lototsky et al. [LSZ21], Hambly et al. [HKN20].
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SPDEs in Finance: other topics

♢ Implied volatility surface: Brace et al. [BFG07]

♢ Pricing of mortgage backed securities (MBS): Ahmad, Hambly,

Ledger [AHL18]

♢ Large portfolio, propagation of chaos: Hambly and Kolliopoulos

[HK17], and Kolli and Shkolnikov [KS18]

♢ Systemic risk: Hambly and Soejmark [HS19]

♢ DNN passing to the limit

♢ ...
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Statistical inference of SPDEs

Consider the stochastic heat equation

{
du(t, x)− θuxx(t, x) dt = σ dW (t, x),

u(0, x) = u0(x),

for x ∈ G ⊆ Rd, t ≥ 0, and where σ and θ are positive parameters of

interest, and W is a cylindrical Brownian motion.

Observations:

Assume that we observe one path of the solution (or a projection of the

solution) discretely or continuously in time and/or space.

Goal:

Find consistent and asymptotically normal estimators for θ and/or σ.

Why:

model estimation; model validation; . . .
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du(t, x)− θuxx(t, x) dt = σ dW (t, x), x ∈ [0, π]

Figure: The observable: a sample path of the solution

Goal: Find or estimate θ and/or σ



Introduction: estimating drift and vol in SDEs

dX(t) = θX(t)dt+ σX(t)dW (t), t ≥ 0 under probability P

Assume we observe one path of the solution, continuously

in time.

Girsanov Theorem (change of drift/ find likelihood ratio):

Under some “technical conditions”, ∃ a probability measure P0 ∼ P, such
that dXt = σXtdBt, under P0, and

dP
dP0

= exp


 θ

σ2

t∫

0

dXt

Xt
− θ2t

2σ2


 .

dP/dP0 - the Likelihood Ratio (Radon-Nikodym derivative).

Maximize Likelihood Ratio ⇒ MLE

θ̂t =
1

t

∫ t

0

dX(s)

X(s)
=

1

t
log

X(t)

X(0)
− σ2

2
, θ̂t → θ , t→ ∞
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Volatility

Intro: estimating volatility σ in ODEs

dX(t) = θX(t)dt+ σX(t)dW (t), t ≥ 0.

Using Quadratic Variation argument:

⟨X⟩T = σ2
∫ T

0
X2

sds.

Hence,

σ =

√
⟨X⟩T∫ T
0 X2

sds
≈

√√√√√√

N−1∑
k=0

(
Xtk+1

−Xtk

)2

∑N
k=1X

2
tk
∆t

→ σ, ∆t→ 0,

with 0 = t0 < t1 < . . . tN = T , for some fixed T .
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Stochastic ODE: conclusion

Stochastic ODE: conclusion

For observations X(t), t ∈ [0, T ],

the drift θ - approximated, the volatility σ - exactly

WHY?

♢ Regular model

1) dPθ
dP0

exists; 2) has a special form (LAN)

Same statistical estimation procedure for all models

Find MLE by maximizing likelihood ratio

♢ Singular model otherwise

Individual approach

In particular, if Pσ1 ⊥ Pσ2 for σ1 ̸= σ2, then one may find σ exactly

What do we have for SPDEs?

Mostly singular, hence individual approaches are needed.
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Stats for SPDEs

Statistics for SPDEs: main methods

♢ Spectral approach:

sampling in the Fourier space in a continuous time setup.

♢ Sampling in physical domain:

discrete sampling in time and/or space.

♢ Local measurements:

sample the solution locality in space and continuously in time.

For up to date bibliography, a dedicated web-site:

https://sites.google.com/view/stats4spdes/
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Stats for SPDEs Spectral approach

Part II:
Spectral Approach
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Stats for SPDEs Spectral approach

Spectral Approach

introduced by M. Huebner, R. Khasminskii, B. Rozovskii [HKR93, HR95]

Consider, the stochasrtic heat eq. with additive noise,

du(t, x) = θuxx(t, x) dt+ σ dW (t, x),

zero initial data, Dirichlet b.c., x ∈ [0, π], σ > 0 known, θ unknown.

The noise:

♢ the (negative) Laplace operator −∆u = −uxx has (only) a discrete

spectrum νk = k2, k ∈ N.

♢ its eigenfunctions hk(x) =
√
2/π sin(kx) form a CONS in L2.

♢ The noise term can be written as

dW (t, x) =

∞∑

k=1

hk(x) dwk(t),

where wk(t) are independent standard 1D Brownian motions.
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Stats for SPDEs Spectral approach

Spectral Approach

The solution can be written as

u(t, x) =

∞∑

k=1

hk(x)uk(t),

where uk(t) = (u, hk)L2 are the Fourier coefficients/modes. Clearly

duk(t) + θk2uk dt = σ dwk(t), k ≥ 1.

Let HN = Span{h1, . . . , hN}, and PN the projection of H = L2 on

HN . Respectively, we put

uN = PNu ≃ (u1, . . . , uN ).

Note that uN follows the dynamics of a finite dimensional system of

decoupled SODEs.

Ig. Cialenco ⋄ ⋄ ⋄ Illinois Tech Oct 2023 ⋄ ⋄ ⋄ Slide 18



Stats for SPDEs Spectral approach

The observations: Assume that we observe one path of the first N

Fourier modes continuously over a finite interval of time [0, T ], i.e. we

observe/measure

uN (t) = (u1(t), . . . , uN (t)), t ∈ [0, T ]

for one ω ∈ Ω.

Possible asymptotic regimes

♢ Large times T → ∞
✓ Large number of Fourier modes (fine space) N → ∞
♢ Small noise σ → 0

♢ Combinations of the above

Denote by Pθ(A) = P(uN ∈ A), A ∈ B(C[0, T ]), the measure generated

by the solution uN .
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Stats for SPDEs Spectral approach

These are ‘diagonalizable models’, in the Fourier space.

Usually, Pθ1(u
N ) ∼ Pθ2(u

N ). It is a finite dimensional system of SODEs.

The likelihood ratio (the Radon–Nikodym derivative),
dPθ1

(uN )

dPθ0
(uN )

is

computed by Girsanov theorem. There exists Maximum Likelohood

Estimator (MLE)

θ̂N = argmax
θ1

log
dPθ1(u

N )

dPθ0

= −
∑N

n=1

∫ T
0 k2uk(t) duk(t)∑N

k=1

∫ T
0 k4u2k dt

.

consistency & asymptotic normality

θ̂N
a.s.−−−−→

N→∞
θ, N

3
2 (θ̂N − θ)

D−−−−→
N→∞

N (0, cσ/T ).
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Stats for SPDEs Spectral approach

... since than ... see survey [Cia18]

♢ Bayesian: Bishwal (’02), Cheng, IgC, Gong (’18)

♢ Several parameters: Huebner (’97)

♢ θ(t)-random: Lototsky (’04)

♢ Small noise: Huebner (’97), Ibragimov-Khasminskii (’98,’99)

♢ ‘almost’ diagonalizable: Rozovskii-Lototsky (’97, ’01)

♢ Additive fractional noise: IgC, Lototsky, Pospisil (’09)

♢ Multiplicative noise: IgC and Lototsky (’08), IgC (’10)

♢ Hypothesis testing: IgC and Xu (’14, ’15)

♢ Trajectory fitting estimators: IgC, Gong, Huang (’16)

♢ Nonlinear SPDE: IgC and Glatt-Holtz (’11) 2D Navier-Stocks,

semilinear SPDEs [PS20], IgC, Ruimeng Hu, Quyuan Lin [CHL23]

Stochastic Primitive Equations.
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Stats for SPDEs Spectral approach

Spectral approach for nonlinear SPDEs; main ideas

On a given stochastic basis (Ω,F ,F,P), consider the evolution equation

dU(t) = θAU(t)dt+ F (U)dt+ σdW (t), U(0) = U0.

♢ assume that U(ω, t) belongs to some “suitable” Hilbert space H;

in particular U = U(ω, t, x)

♢ (−A) a linear, selfadjoint, positive-defined (think (-Laplace)β) in H
with eigenfunctions {Φk}k≥1 CONS in H

♢ σdW (t) =
∑

k≥1 σkΦkdWk(t), Wk, k ∈ N ind. Brownian Motions

♢ F maybe nonlinear, ‘subordinated’ to A; σ known

♢ U observed for all t ∈ [0, T ] - continuous observations

Goal:

Find estimators θ̂(ω), ω ∈ Ω, for parameters θ by observing a single

outcome u = u(ω, t) ∈ H over a finite time horizon t ∈ [0, T ].
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Stats for SPDEs Spectral approach

Formal Procedure to Derive an Estimator

♢ Project the full system down to N dimensions PN (H) = HN ≃ RN

dUN = (θAUN +ΨN )dt+ PNσdW, U(0) = U0

♢ Let PN,T
θ (·) = P(UN ∈ ·) be the measure on C([0, T ];RN )

generated by UN ;

PT
θ be the measure generated by U on C([0, T ];H).

♢ Usually (at least in linear case), we can prove that PN,T
θ1

∼ PN,T
θ2

Hence, get MLE type estimators θ̂N,T .

♢ Usually (at least in linear case) PT
θ1
⊥PT

θ2
;

An indication that the true parameter θ can be found exactly.

Ig. Cialenco ⋄ ⋄ ⋄ Illinois Tech Oct 2023 ⋄ ⋄ ⋄ Slide 23



Stats for SPDEs Spectral approach

Formal Procedure to Derive an Estimator in Nonlinear Case

♢ Formally treat ΨN = PNF (U) as an external and known quantity

(independent of θ)

♢ Assume that PNσ is invertible on HN

♢ Take G := PNσ(U)(PNσ(U))∗ and assume it commutes with A

♢ For a reference values θ0, apply (formally) Girsanov Theorem and

get the ’Likelihood Ratio’ (Radon-Nikodym derivative) dPN,T
θ /dPN,T

θ0

♢ Maximize the Log-Likelihood Ratio

θ̃N,T (ω) := argmax
θ

dPN,T
θ /dPN,T

θ0
(ω)
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Stats for SPDEs Spectral approach

dPN,T
θ

dPN,T
θ0

=exp
[
−
∫ T

0
(θ − θ0)⟨AUN , GdUN (t)⟩

− 1

2

∫ T

0
(θ2 − θ20)⟨AUN , GAUNdt⟩

−
∫ T

0
(θ − θ0)⟨AUN , GψNdt⟩

]
,

θ̂1,N = −
∫ T
0 AUNGNdUN +

∫ T
0 AUNGNPNF (U))dt

∫ T
0 AUNGNAUNdt

,

θ̂2,N = −
∫ T
0 AUNGNdUN +

∫ T
0 AUNGNPNF (UN ))dt

∫ T
0 AUNGNAUNdt

,

θ̂3,N = −
∫ T
0 AUNGNdUN∫ T

0 AUNGNAUNdt
.
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Stats for SPDEs Spectral approach

Idea of the proof

Easy to represent:

θ̂2,N = θ +

∫ T
0 ⟨AUN , G

∑N
j=1 σj(U)ΦjdWj(t)⟩

∫ T
0 AUNGNAUNdt

+

∫ T
0 ⟨AUN , G(FN (U)− FN (UN ))⟩dt

∫ T
0 AUNGNAUNdt

θ̂3,N = θ +

∫ T
0 ⟨AUN , G

∑N
j=1 σj(U)ΦjdWj(t)⟩

∫ T
0 AUNGNAUNdt

+

∫ T
0 ⟨AUN , GFN (UN )⟩dt
∫ T
0 AUNGNAUNdt

♢ Show that each of ‘the excess term converges to zero’

♢ Use LLG and CLT for martingales

♢ sharp control of the moments of relevant parts

♢ ‘splitting argument’ to deal with the nonlinear part
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Stats for SPDEs Spectral approach

Splitting argument

Decompose U = Ū +R = linear + nonlinear

dŪ = θAU dt+ σdW, Ū(0) = Ū0

dR = θAR dt+ F (U) dt, R(0) = R0.

♢ Find explicit and exact rates for the moments of the linear part

♢ Show that R is slightly ‘more regular’ than Ū , and use this to show

that the terms involving R vanish.

Theorem

All three estimators θ̂1,N , θ̂2,N , θ̂3,N , are consistent and asymptotically

normal,

θ̂k,N
a.s.−−−−→

N→∞
θ, NJ(θ̂k,N − θ)

D−−−−→
N→∞

N (0, σ∗),

for some known rate of convergence J , depending on the dimension of

the space and order of A, and with a known asymptotic variance σ∗.
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Stats for SPDEs Discrete sampling

Part III:
Discrete sampled SPDEs in physical domain
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Stats for SPDEs Discrete sampling

Stats for SPDEs: discrete sampling in physical domain

The parameter estimation problem for (linear) SPDEs when the solution

is discretely sampled in space and/or time component was addressed

systematically only recently by quite different methods: [CH20, BT20]

and consequently in [BT19, Cho20, CDVK20, Cho19, KU21, KT19a,

KT19b, HT21, CK22, SST20, CKP23], and to [PR97, PT07] for earlier

studies, as well as the recent work [HT23] on reaction-diffusion equations.

Our approach: use the exact order of regularity and correctly chosen

power variation.
[CKP23] C., H.-J. Kim and G. Pasemann Statistical analysis of discretely sampled

semilinear SPDEs: a power variation approach, forthcoming in Stochastics and Partial

Differential Equations: Analysis and Computations, 2023+.

[CK22] C. and H.-J. Kim, Parameter estimation for discretely sampled stochastic heat

equation driven by space-only noise revised, SPA, 22, pp. 1-30, 2022.

[CH20] C. and Y. Huang, A note on parameter estimation for discretely sampled

SPDEs Stochastics and Dynamics 20(3), pp. 2050016, 2020 (28 pages, preprint 2017).
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Stats for SPDEs Discrete sampling

The main goal

Statistical analysis of discretely sampled (SPDEs) of the form

dXt(x) = −θ(−∆)α/2Xt(x)dt+ F (Xt(x)) dt+ σ(−∆)−γdWt(x),

for x ∈ [0, 1], t > 0, Dirichlet boundary conditions and zero initial data,

and where

♢ α > 0, γ ≥ 0 are given constants,

♢ W is a cylindrical Wiener process on L2([0, 1]),

♢ F is a (nonlinear) operator acting on some appropriate Hilbert space,

♢ θ, σ are the parameters of interest (unknown).

Simplest nontrivial example: Stochastic heat equation

du(t, x) = θuxx(t, x) dt+ σ
∑

k≥1

k−2γ sin(kπx) dwk(t), x ∈ [0, 1],

observed at some discrete points (tk, xj).
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What is the problem?

dXt(x) = −θ(−∆)α/2Xt(x)dt+ F (Xt(x)) dt+ σ(−∆)−γdWt(x)

♢ We know how to treat the case of non-smooth path, both in time

and space; for γ = 0, X ∈ C
1/4−,1/2−
t,x [CH20].

♢ It is enough to sample discretely the solution X(t, x) in space and/or

time at one time point, or one space point, or on a space-time mesh.

Figure: Sampling schemes
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dXt(x) = −θ(−∆)α/2Xt(x)dt+ F (Xt(x)) dt+ σ(−∆)−γdWt(x)

♢ Larger γ gives smoother solutions.

♢ Regularity in t can’t get better than Hölder 1/2-, and the existing

power variation methods apply.

♢ X(t, ·) can reach any order of smoothness, when γ ↗ ∞.

For example, when F = 0, X(t, ·) is Hölder continuous
of order 2γ + α/2− 1/2.

♢ We focus on sampling the solution X discretely in spatial variable x

and for a fixed t > 0.
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Main line of reasoning

♢ Take the maximal number of (classical) derivatives in x, say

m := ⌊2γ + α/2− 1/2⌋

♢ Expect that

∂mx Xt(x) ∼ fBMH + ‘smooth process’,

with H = 2γ + α/2− 1/2−m.

♢ Adapt the existing results on power variations from

[CH20, KT19a, KT19b].

♢ It works!

However, assuming that the process ∂mx Xt(x), x ∈ (0, 1) is

observed, practically speaking is unrealistic.
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Main line of reasoning

♢ Natural idea: approximate the derivatives ∂mx Xt(x) by using the

discrete measurements of the solution itself, for example by finite

differences.

♢ It does not work!

Such approximations typically yield a nontrivial and non-vanishing

bias in the estimators; see also [CKL20], [CK22].

Main results

Find the needed adjustments (biases) for the naively approximated

estimators and prove consistency and asymptotic normality.
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Notations

For real valued measurable function Xt, t ∈ R, we put

JXt :=

∫ t

0
Xr dr, t ∈ R,

∆hXt := Xt+h −Xt, t ∈ R, h > 0.

For M,m ∈ N0 := N ∪ {0}, we have

∆M
h (JmXt) =

M∑

k=0

(−1)M−k

(
M

k

)
JmXt+kh, t ∈ R, h > 0.

C(R) denotes the space of continuous and bounded functions on R,
endowed with ∥f∥∞ := sup |f |.

Ck(R) := {f ∈ C(R) : ∥f∥Ck(R) :=
∑

j≤k ∥Djf∥∞ <∞},
for k ∈ N, and with D being the differential operator.
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♢ Let π = {t0, . . . , tN} be the uniform partition of size N of the

interval [a, b] ⊂ [0, T ]

♢ Put h := hN := (b− a)/N = tk+1 − tk, k = 0, . . . , N .

♢ For fixed s > 0, q,M,N ∈ N, such that N > M , we define

Vq,M,s,N (X) :=
1

b− a

N−M∑

k=0

h

∣∣∣∣
∆M

h Xtk

hs

∣∣∣∣
q

.

♢ The ∆-power variation of order (q,M, s) of process X is defined

as

Vq,M,s(X) := P− lim
N→∞

Vq,M,s,N (X),

provided that the limit (in probability) exists.

Note that Vp,1,1 corresponds to the (normalized) power variation of order p.
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Theorem

Let q ≥ 1, s > 0, M ∈ N with M > s. Assume that X ∈ Cs([a, b]) and

for some α > 0, Σ ≥ 0, the following limit exists

h−α
N (Vq,M,s,N (X)− Vq,M,s(X))

d−−→ N (0,Σ), as N → ∞,

where N (0,Σ) is a Gaussian random variable with mean zero and

variance Σ. Then, for any Y ∈ Cs+η([a, b]) with η > α, and M > s+ α,

h−α
N (Vq,M,s,N (X + Y )− Vq,M,s(X))

d−−→ N (0,Σ), as N → ∞.

Proof based on equivalence of Hölder-Zygmund spaces and classical

Hölder spaces.
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The case of fBM

♢ A fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is

a centered Gaussian process BH = (BH
t )t∈R such that

E
(
BH

t B
H
r

)
=

1

2

(
|t|2H + |r|2H − |t− r|2H

)
, t, r ∈ R.

♢ A fBM BH is H-self-similar process with stationary increments.

♢ Generally speaking, differences of integrals of fBm are not

self-similar in the usual sense.

♢ We extend the notion of self-similarity to a parameterized family of

processes, say X(h), h > 0. We say that X(h) is parameterized

s-self-similar if the law of (h−sX
(h)
ht )t∈R is independent of h > 0.

If M ≥ m, then ∆M
h J

mBH is parameterized (m+H)-self-similar and

has stationary increments.
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Main result for fBM

Theorem

Let M > m ≥ 0 and q ≥ 1 be integers, s = H +m, and assume that

either of the following assumptions is satisfied:

(i) M = m+ 1 and 0 < H < 3/4,

(ii) M ≥ m+ 2 and 0 < H < 1.

Then, there exists σq,M,s > 0 such that

√
N

(
Vq,M,s,N

(
JmBH

)
− τqµ

q/2
M,s

)
d−→ N

(
0, σ2q,M,sµ

q
M,s

)
, as N → ∞,

where τq := E|Z|q with Z ∼ N (0, 1).

Moreover, if q is an even number, then σ2q,M,s =
∑q

k=1

(
q
k

)2
τ2q−kρ

2
k,M,s,

where ρ2q,M,s := q!
∑

ℓ∈Z
(ρM,s(ℓ))

q.

Recall that Vq,M,s(X) := P− limN→∞
1

b−a

∑N−M
k=0 h

∣∣∣∆
M
h Xtk
hs

∣∣∣
q

.
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Remarks

♢ The proof is based on a version of Breuer-Major Theorem.

♢ The limit of Vq,M,s,N (JmBH) depends through µM,s on the

regularity s of the process as well as the number of differences M .

♢ Even for small h it is not possible to approximate the rescaled finite

difference operator h−1∆h in the definition of Vq,M,s,N (JmBH) by a

derivative operator without introducing a non–trivial bias, due to the

change in M and s.

♢ The constant µM,s can be easily computed.

If M = 1, m = 0 and 0 < H < 3/4, then µM,s = 1.

If M = 2, m = 1 and H = 1/4, then

µM,s = (
√
2− 1)1615 ≈ 0.44.

If M = 2, m = 1 and H = 1/2, then µM,s = 2/3.
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The case of semilinear SPDEs

♢ We consider SPDEs on D = (0, 1) with zero boundary conditions.

♢ Set Φk(x) =
√
2 sin(kπx) and λk = k2π2, k ∈ N. These are the

eigenfunctions and eigenvalues of the Laplacian ∆ = ∂xx.

♢ The set {Φk}k∈N forms an orthonormal basis in L2(D).

♢ Put Hs(D) := {u ∈ L2 | ∑∞
k=1 λ

s
k(u,Φk)

2 <∞}, for s ∈ R,

We consider the following semilinear SPDE on L2(D):

dXt =
(
−θ(−∆)α/2Xt + F (Xt)

)
dt+ σ(−∆)−γdWt, X0 ∈ L2(D),

where α, θ, σ > 0, W is a cylindrical Wiener process on L2(D),

γ > 1/4− α/4, and F is a nonlinear operator.

We assume that the above SPDE is well-posed in L2(D) in the

analytically mild and probabilistically weak sense.
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Splitting of the solution argument

We use the splitting of the solution argument (see [CGH11, PS20, ACP20]),

by writing X = X + X̃, where

dXt = −θ(−∆)α/2Xtdt+ σBdWt, X0 = 0,

dX̃t =
(
−θ(−∆)α/2X̃t + F (Xt + X̃t)

)
dt, X̃0 = X0.

The solution to the linear equation can be written as a Fourier series

Xt = σ

∫ t

0

e−θ(t−r)(−∆)α/2

BdWr =

∞∑

k=1

(
σλ−γ

k

∫ t

0

e−θ(t−r)λ
α/2
k dW (k)

r

)
Φk

=:

∞∑

k=1

xk(t)Φk,
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Fine continuity properties

Proposition

For any s < 2γ + α/2− 1/2, it holds that X ∈ C(0, T ;Cs(D)).

Hence X has up to ⌊2γ + α/2− 1/2⌋ =: m classical derivatives. We call

s∗ = 2γ + α/2− 1/2 the optimal regularity. We assume that

s∗ /∈ N.

Proposition

Assume that there exist η, ϵ > 0, 0 ≤ s0 < s∗, and a continuous function

g : [0,∞) → [0,∞), such that for any s0 ≤ s < s∗,

∥F (u)∥s+η−α+ϵ ≤ g(∥u∥s),

where, as before, ∥·∥s denotes the Hölder-Zygmund norm. Let

X ∈ C(0, T ;Cs0(D)) and X0 ∈ Cs∗+η(D). Then we have

X̃ ∈ C(0, T ;Cs+η(D)), for any 0 ≤ s < s∗, and X ∈ C(0, T ;Cs(D)).
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Examples

The above conditions are satisfied for large classes of SPDEs. Some

important examples of the nonlinearity F :

1) (fractional) Heat equation: In the case F = 0, the SPDE becomes

linear, sometimes called fractional heat equation, and the Lip

condition is trivially satisfied for any η > 0.

2) Reaction-diffusion equation: Let F (u)(x) = f(u(x)), where f is a

polynomial function or f ∈ C∞
b (R). Then Lip condition is true for

any 0 < η < 2.

3) Advection-diffusion equation: Let F (u) = v∂xu for a given

v ∈ C∞(D). Then Lip condition holds with any 0 < η < 1.

4) If F = F1 + F2, for some F1, F2 that satisfy Lip condition with

continuous functions g1, g2, then F satisfies Lip condition with

g = g1 + g2.
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Parameter estimation for SPDEs

Theorem

Let t > 0, m ∈ N0, 0 < H < 1 such that m+H = s∗ = 2γ + α/2− 1/2. Let
M, q ∈ N, and assume that either M = m+ 1 with H < 1/2 or M ≥ m+ 2.
Suppose that Lip condition holds for some η > 1/2, and assume that θ is
known. Then

σ̂q,M
N := τ−1

q (2θ/(νHµM,s∗))
q/2Vq,M,s∗,N (Xt)

with νH := − 2
πΓ(−2H) cos(πH), is a consistent estimator for σq, and for any

ϵ > 0,
σ̂q,M
N = σq + oP(N

−1/2+ϵ).

If s∗ ∈ 1/2 + N0, then also

√
N

(
σ̂q,M
N − σq

)
d−−→ N

(
0,
σ2q

τ2q
σ2
q,M,s∗

)
, as N → ∞.

Similar statement holds true for parameter θ.
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Numerical example

Consider the stochastic heat equation

dXt = θ∆Xtdt+ σ(−∆)−γdWt,

with initial condition X0 = 0 on D = [0, 1] with Dirichlet BC.

♢ Take true values of the parameters θ, σ = 1.

♢ The smoothing parameter γ ∈ {0.0, 0.375, 0.5, 0.625}, which correspond to
the regularity level s∗ = 2γ + 1/2 ∈ {0.5, 1.25, 1.5, 1.75}.

♢ Simulate the path using the Fourier series decomposition of the solution by
taking N0 = 1× 104 eigenmodes.

♢ Eigenmodes are simulated by the Euler implicit scheme with δt = 1× 10−8.

♢ The solution is computed at N0 + 1 uniformly spaced spatial grid points
with step size h = 1× 10−4.

♢ Assume that the solution X is observed at time T = 1 on spatial grid
points belonging to the interval [a, b], with a = 0.2, b = 0.8.

♢ Apply the main Theorem, with q = 2 and M = ⌈s∗⌉+ 2.
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Figure: Estimation of σ.
Left panel: the average of 100 Monte Carlo estimates as function of
spatial sampling resolution h. The solid black line corresponds to the
true value σ = 1.0.

Right panel: The RMSE (root mean square error) as function of h. The
black line corresponds to the theoretical convergence rate h1/2.
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The end of the talk ...but not of the story
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Appendix

Breuer-Major Theorem [NP12, Theorem 7.2.4 ].

Theorem

Let Y = {Yk}k∈Z be a centered stationary Gaussian sequence with unit

variance, and f(x) =
∞∑

q=d

aqHq(x), aq ∈ R, where Hq is the q-th

Hermite polynomial. Assume that

∑

ℓ∈Z
|ρ(ℓ)|d <∞, (3.1)

where ρ(ℓ) = E (Y0Yℓ) , ℓ ∈ Z. Then,

w− lim
N→∞

1√
N

N∑

k=1

f(Yk) = N


0,

∞∑

q=d

q!a2q
∑

ℓ∈Z
ρ(ℓ)q


 .
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The noise W (t, x)

W (t) is a cylindrical Brownian motion, if it is an H = L2(Λ)-

valued continuous Gaussian process with W (0) = 0, and covariance

structure

E[⟨W (t), g⟩Λ · ⟨W (s), f⟩Λ] = min(t, s) · ⟨f, g⟩Λ

Ẇ (t, x), t ≥ 0, x ∈ Λ ⊂ Rd is called space-time white noise:

♢ a zero mean Gaussian process with covariance

E[Ẇ (t, x)Ẇ (s, y)] = δ(t− s)δ(x− y)

♢ Ẇ (t, x) =
∑

k≥1 hk(x)ẇk(t),
where {hk(x)}k∈N is an orthonormal basis in L2(Λ), and {ẇk}k∈N are
independent 1d white-noises.

♢ a random generalized function on L2((0, T )× Λ)

Ẇ (t, x) =
∫ T

0

∫
Λ
f(t, x) dW (t, x).
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