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Introduction

Optimal Portfolio Selection

Keynes’ approach: analyze fundamentals.

Markowitz approach: observe the market and solve a mean-variance
problem.

Utility Optimization: observe the market and solve an expected utility
optimization problem.

Robust Utility Optimization: observe the market and include
uncertainty into the expected utility optimization problem in a zero
sum game way.

Data driven approaches using learning techniques as, e.g., signature
transforms.

Stochastic Portfolio Theory (SPT): only rely on observables (to be
defined) and build robustly growing portfolios due to normative
assumptions by means of a generating function.
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Introduction

Critique

What are pathwise observables? Prices, quadratic covariation,
portfolios, etc, but ...

... neither jump structures nor drifts can be considered observable
with high accuracy.

A quantitative knowledge of preferences is ad hoc and cannot easily
be based on observables.

On the other hand: portfolios soley build upon observables and soley
relying on functional generation as in SPT might be too restriced a
class?
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Introduction

In an ideal world

Robust Utility Optimization takes all data and uncertainty into
account appears as cleanest approach.

Robust Utility Optimization is a zero sum game (in case of fixed
utility): the investor against an adverserial market. Analytical
techniques are, however, challenging.

Machine learning techniques in the spirit if generative adversarial
networks can be applied and are helpful.

Problems: high complexity of training of path dependent trading and
adversarial strategies. Additionally we face difficulties to determine
reasonable adversarial markets. A priori there is no reason why path
dependence should disappear.
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Introduction

Message from SPT

If SPT makes sense, then path dependence should at least in case
logarithmic utilities vanish, i.e. trading strategies can be chosen from
soley price dependent classes (in particular no dependence on wealth
processes), however complicated markets are.

When does that actually happen and how complicated can we choose
the market?

If path dependence vanishes the learning problem sees a spectacular
decrease of complexity (a game is replace by an optimization problem
and path dependence is replaced by price dependence).
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Introduction

Goal of the talk

Showcase when path dependence vanishes following seminal work of
Kostas Kardaras and Scott Robertson.

Reduce the zero sum game to an optimization problem.

Introduce a finite time horizon zero sum game of robust growth
optimization type with a similar phenomenon.

Highlight on learning techniques which show the phenomenon beyond
logarithmic utility.
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Robust Growth Rates – Kardaras-Robertson Setting

Local covariance Setting

We look at a market, appropriately discounted, where sufficiently many
observed trading instruments modelled by continuous semi-martingales X
on path space (and therefore with some extrapolation the instantaneous
covariance function c) as well as a strictly positive invariant measure
p(x)dx are available. Let Π be the set of measures such that ...

X is a semimartingale and [X ,X ] =
∫ .

0 c(Xs)ds, for some invertible
symmetric matrix c for P ∈ Π,

1
T

∫ T
0 f (Xt)dt −→

∫
Rd f (x)p(x)dx almost surely for all P ∈ Π.

For every ε > 0 there is a compact K such that P(Xt /∈ K ) < ε for all
t ≥ 0 holds for all P ∈ Π.

Notice that providing an invariant measure is less than providing a drift.
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Robust Growth Rates – Kardaras-Robertson Setting

Themes

Why are functionally generated portfolios a robust (data driven)
choice for portfolio selection?

Understand the geometry of all drifts (given the covariance structure),
which lead to the same invariant measure.
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Robust Growth Rates – Kardaras-Robertson Setting

Local Covariance Setting

The growth rate of an investment θ in the market (value processes are
assumed be positive here) is defined

g(θ,P) := sup

{
γ ∈ R | lim

T→∞
P
(

log E((θ • X ))T ≥ γT
)

= 1

}

What can we say about the robust growth rate of an optimal investment
into this market, i.e.

sup
θ

inf
P∈Π

g(θ,P)

and how could we possibly calculate it and how does a robust growth
portfolio look like?
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Robust Growth Rates – Kardaras-Robertson Setting

Heuristics

We can easily establish a class of strategies Θ0 ⊂ Θ that have the
following growth rate invariance property:

g(θ;P) is independent of P ∈ Π for every θ ∈ Θ0.

We define

D =

{
ϕ ∈ C 2(E ) :

∫
E

∣∣∣∣∣Tr(c(x)∇2eϕ(x))

eϕ(x)

∣∣∣∣∣ p(x) dx <∞

}
.
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Robust Growth Rates – Kardaras-Robertson Setting

Heuristics

The class
Θ0 = {θϕ. = ∇ϕ(X.) : ϕ ∈ D}

of functionally generated portfolios has the growth rate invariance
property. Indeed, denoting by θϕ ∈ Θ0 the strategy determined by ϕ we
see by Itô’s formula that under any measure P ∈ Π,

logV θϕ

T = ϕ(XT )− ϕ(X0)− 1

2

∫ T

0

Tr(c(Xt)∇2eϕ(Xt))

eϕ(Xt)
dt,

for instantaneous covariance structure c .

26 / 44



Robust Growth Rates – Kardaras-Robertson Setting

Heuristics

By tightness of the laws of {XT}T≥0 we have that ϕ(XT )/T → 0 in
probability as T →∞.

Hence, by the ergodic property it follows that

g(θ;P) = −1

2

∫
F

Tr(c(x)∇2eϕ(x))

eϕ(x)
p(x) dx .

It is clear that we should optimize over the right hand side. The delicate
question which remains is the following: can we find at least one P ∈ Π
such that the optimal θϕ

∗
is growth-optimal overall. This is actually a

question of non-explosion of a formally given model.
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Robust Growth Rates – Kardaras-Robertson Setting

Results by Karadaras, Robertson AAP 2022

Consider the optimization problem

u 7→
∫
Rd

Lcu

u
(x)p(x)dx

with Lc(u)(x) = Tr(c(x) Hessian u(x), whose strictly positive solution u∗

(existence!) defines a strategy θt := ∇u∗(Xt)
u∗(Xt)

, which realizes the robust
growth rate and allows also to define a worst case model, where this very
strategy is optimal.

In particular the robust growth-optimal strategy is functionally generated.

Question: can the setting also be made more realistic, i.e. does this also
work with a factor dependence of the covariance structure? (this is of
considerably higher complexity since we are loosing a sort of Markovianity)
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Robust Growth rate – stochastic factor setting

Setting

We fix integers d ,m ≥ 1 and a non-empty open, connected sets E ⊂ Rd ,
D ⊂ Rm. Set F = E × D. We will generically denote elements of E by x ,
elements of D by y and set z = (x , y) for elements of F . For a function u
we write ∇xu for (∂x1u, . . . , ∂xdu), divx u for

∑d
i=1 ∂xiu, and use ∇yu and

divy u analogously.

The set E will serve as the state space for the d-dimensional asset process
X , while the set D serves as the state space for a m-dimensional factor
process Y . Consequently the joint (d + m)-dimensional process
Z = (X ,Y ) has state space F .

We take as input a matrix valued function cX : F → Sd++ and a positive
function p : F → (0,∞), which will serve as the instantaneous covariance
matrix for X (which also depends on Y ), and the joint invariant density of
X and Y . We impose the following regularity assumptions on the inputs.

29 / 44



Robust Growth rate – stochastic factor setting

Regularity assumptions

For a fixed γ ∈ (0, 1],

1 D is a bounded convex set,

2 cX ∈W 1,∞
loc (F ;Sd++) ∩ C (F ;Sd++) and for every y ∈ D,

cX (·, y) ∈ C 2,γ(E ; Sd++).

3 p ∈W 2,∞
loc (F ; (0,∞)) ∩ C (F ; (0,∞)) and for every y ∈ D,

p(·, y) ∈ C 2,γ(E ; (0,∞)). Additionally it is assumed that
∫
F p = 1.
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Robust Growth rate – stochastic factor setting

Regularity Assumptions

Given inputs cX and p we denote the averaged instantaneous covariance
with

Aij(x) =

∫
D
c ijX (x , y)p(x , y) dy ; i , j = 1, . . . , d , x ∈ E .

We will need to allow ourselves to modify the input cX outside of a
compact set K ⊂ E , but without changing the average value A. Let cX
and p satisfying the regularity assumptions. Define

C =

{
c̃X ∈W 1,∞

loc (F ; Sd++) ∩ C (F ; Sd++) :

∫
D
c̃X (., y)p(., y) dy = A(.)

}
.

For a compact set K ⊂ E we define the class

CK = {c̃X ∈ C : c̃X = cX on K}.

We say an element c̃X of CK is a K -modification of cX .
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Robust Growth rate – stochastic factor setting

Regularity Assumptions

For a compact set K ⊂ E we denote by ΠK the set of all measures P on
(Ω,F) such that the following conditions hold:

1 X is a P-semimartingale with covariation process
[X ,X ] =

∫ ·
0 c̃X (Zt) dt for some c̃X ∈ CK ,

2 For any locally bounded h ∈ L1(F , µ), where µ(dz) := p(z)dz ,

lim
T→∞

1

T

∫ T

0
h(Zt) dt =

∫
F
hp; P-a.s.,

3 The laws of {Xt}t≥0 under P are tight.

We also define the classes Π∪ =
⋃

K⊂E ΠK and Π∩ =
⋂

K⊂E ΠK , where
the union and intersection are taken over compact sets K .

Note that if K1 ⊂ K2 then CK2 ⊂ CK1 so that ΠK2 ⊂ ΠK1 . Additionally any
measure P ∈ Π∩ has [X ,X ] =

∫ ·
0 cX (Zt) dt, rather than a K -modification

appearing as the instantaneous covariance matrix.
32 / 44



Robust Growth rate – stochastic factor setting

Important Remark

To consider Y is a stochastic factor driving stochastic covariance is
natural, but not the only interpretation. Actually to interpret Y is a factor
representing uncertainty in the knowledge of cX is equally important. It
can also be a mixture of both.

In the latter case (uncertainty) a prescribed diffusion dynamics of Y is of
less importance, but the invariant measure matters. In the former case
(stochastic covariance) a prescribed generic diffusion dynamics is of
importance.
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Robust Growth rate – stochastic factor setting

Trading

Let Θ be the set of all predictable processes that are X -integrable with
respect to every P ∈ Π∪. For any θ ∈ Θ we define the investor’s wealth
process by

V θ = E
(∫ ·

0
θ>t dXt

)
,

where E denotes the Doléans-Dade exponential of a semimartingale. The
goal is to maximize the investor’s asymptotic growth rate over our
admissible class of measures, which is defined as follows:

For a strategy θ ∈ Θ and a measure P ∈ Π∪ we define the asymptotic
growth rate of θ to be

g(θ;P) = sup

{
γ : lim

T→∞
P(T−1 logV θ

T ≥ γ) = 1

}
.

Furthermore the robust optimal asymptotic growth rate λK is defined as
supθ infP∈ΠK

g(θ,P).
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Robust Growth rate – stochastic factor setting

Stochastic Factor Case (Itkin, Koch, Larsson, JT)

One can consider two auxiliary maximization problem, whose solutions
define a factor independent strategy θt = ∇u∗(Xt)

u∗(Xt)
and an overall worst

case model, where the constructed strategy is growth optimal (overall).

The resulting strategy is again (and surprisingly) functionally generated
and does not have a factor dependence. However, the worst case model is
considerably more involved and needs only recently developed analytical
tools (non-symmetric Dirichlet forms).

The following theorems make the results precise – be aware that additional
assumptions are needed which are a bit technical.
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Robust Growth rate – stochastic factor setting

Theorem 1

There exists a unique (up to additive constant) ϕ̂ satisfying

ϕ̂ = arg min
ϕ∈D

1

2

∫
E

Tr(A(x)∇2eϕ(x))

eϕ(x)
dx .

Define

λ =
1

2

∫
E
∇ϕ̂>(x)A(x)∇ϕ̂(x)dx

and the strategy
θ̂t := ∇ϕ̂(Xt); t ≥ 0.

Then for every compact set K ⊂ E we have that λK = λ. Moreover,
g(θ̂;P) = λ for every P ∈ ΠK , so that θ̂ is robust growth-optimal.
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Robust Growth rate – stochastic factor setting

Theorem 2

For every compact set K ⊂ E and every (x , y) ∈ F there exists a measure
P̂K

(x ,y) which is a weak solution to the stochastic differential equation

dXt = c̃X (Xt ,Yt)∇ϕ̂(Xt) dt + c̃
1/2
X (Xt ,Yt) dW

X
t

dYt = cY (Xt ,Yt)∇y v̂(Xt ,Yt) dt + c
1/2
Y (Xt ,Yt) dW

Y
t

and satisfies P̂K
(x ,y)(X0 = x ,Y0 = y) = 1. Here W := (W X ,W Y ) is a

standard (d + m)-dimensional Brownian motion, cY satisfies unstated
assumptions, ϕ̂, c̃X and v̂ are given via certain optimization problems.

We additionally have that µ is an invariant measure for (X ,Y ) and for
every locally bounded h ∈ L1(F , µ)

lim
T→∞

1

T

∫ T

0
h(Xt ,Yt) dt =

∫
F
hp; P̂K

(x ,y)-a.s.

Consequently, the laws of {Xt}t≥0 are tight under P̂K
(x ,y) and so we have

that P̂K
(x ,y) ∈ ΠK for every (x , y) ∈ F .
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Robust Growth rate – stochastic factor setting

Conclusion

Functionally generated portfolios appear as asymptotic growth optimal
choice even in the (robust) presence of exogenous stochastic factors.
Path dependence appears to be asymptotically of less interest.

Even though the heuristic argument is simple, the proof is surprisingly
involved.

It is open to find a simpler proof and to ask which additional
information on Y would change the picture. So far a joint invariant
law is given for (X ,Y ), the instantaneous covariance for X is given,
and one can choose the instantaneous covariance for Y in a relatively
rich class of functions. [X ,Y ] is assumed to vanish for the worst case
model but this can also be generalized.

38 / 44



Learning Strategies of Optimal Portfolio Selection

Conclusion and Critique

Surprisingly the robust growth optimal is functionally generated and
does not depend on the factor process.

Its calculation soley depends on p and c.

Is p really an observable?

What happens in a setting of T <∞?
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Learning Strategies of Optimal Portfolio Selection

T <∞

1 X is a P-semimartingale with covariation process
[X ,X ] =

∫ ·
0 c̃X (Zt) dt for some c̃X ∈ CK ,

2 The laws of Zt equal µ(dz) := p(z)dz for t ∈ [0,T ] (invariant
measure case).

Then completely analogous conclusions to Theorem 1 and 2 hold true in
case of logarithmic utility and averaging over initial prices, in particular the
robust growth portfolio is functionally generated and there is again a worst
case model.
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Learning Strategies of Optimal Portfolio Selection

Robust Utility Optimization in a stochastic factor setting

We consider now a finite time horizon (general) utility optimization
problem

sup
θ

inf
P∈Π

E
[
u(V x ,θ

T )
]
,

where the uncertainty class is pinned down by constraining
1
T

∫ T
0 h(Xs ,Ys)ds for certain h, which is less information than knowing p.

The actor chooses θ and the critic chooses P.
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Learning Strategies of Optimal Portfolio Selection

Before Learning we learn a bit from ILKT2022

We still know that asymptotic growth rates are realized by
functionally generated portfolios in X .

It seems that at least in ergodic setting with logarithmic utility path
dependence evaporates.

Idea: model strategies of the generator by (random) recurrent
networks (following work of Ivan Guo et al (2022)).

Loss function: utility plus penalizations for deviations of observations
of time averages.

Discriminator: fully generic discriminator dynamics satisfying
appropriate constraints.
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Learning Strategies of Optimal Portfolio Selection

Results

(joint work with Florian Krach and Hanna Wutte)

GAN-based (robust) utility optimization works well,

applicable in very general settings,

strategy recovers analytic solution,

approximates solution well in cases without analytic solution,

FFNN and RNN nearly same (i.e. no strong path dependence).
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Learning Strategies of Optimal Portfolio Selection
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