Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Why is Cash U-Shaped in Firm Size?

Ali Kakhbod Max Reppen Tarik Umar Hao Xing UC Berkeley Boston University Rice University Boston University

> Bachelier Finance Society One World Seminars Nov. 2023

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Motivation

Amadeus data:

- 11.5 million private firms, 45 European countries,
- \$100 trillion assets
- 42.8% aggregated corporate assets, 61.8% total workforce in Europe
- 2011 2022
- Average Amadeus firms are much smaller than U.S. public firms mean Amadeus firm has \$1.9-million in assets mean U.S public firm in COMPUSTAT has \$849-million in assets

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Cash holdings are U-shaped in firm size

Figure: Cash holdings and firm size

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Firms in different size categories

4/28

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Equity issuance

Figure: Equity raises and firm size

Model Solution

Mechanism 0000 Model calibration

Conclusion

What we do

Dynamic firm model

- Investment, payout, default, equity issuance, cash holdings
- Model is not homothetic in firm size
 - Decreasing return to scale
 - Fixed equity issuance cost, independent of firm size

Model is calibrated to empirical moments using SMM

Model Solution

Mechanism 0000 Model calibration

Conclusion

What we do

Dynamic firm model

- Investment, payout, default, equity issuance, cash holdings
- Model is not homothetic in firm size
 - Decreasing return to scale
 - Fixed equity issuance cost, independent of firm size

Model is calibrated to empirical moments using SMM

What we obtain:

Firm's demand for cash is U-shaped in firm size

- Small firm has strong motive to invest, but face low cash flow and high issuance cost
- Large firm has strong motive to hedge cash flow risk

Model generated U-shape is close to the empirical counterpart

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Literature

- Jeanblanc-Picqué and Shiryaev (1995)
- Radner and Shepp (1996)
- Asmussen and Taksar (1997)
- Décamps, Mariotti, Rochet, Villeneuve (2011)
- Bolton, Chen, Wang (2011)
- Anderson, Charverhill (2012)
- Jiang and Pistorius (2012)
- Akyildirim, Gü, Rochet, and Soner (2014)
- Reppen, Rochet, and Soner (2020)

Model Firm •000000 Model Solution

Mechanism 0000 Model calibration

Conclusion

Cash Flows

$$dZ_t = \mu dt + \sigma dW_t$$

 $dY_t = k_t^{lpha} dZ_t$

- dZ_t is the cash flow shock
 - W is one-dimensional Brownian motion
 - μ is the drift
 - σ is the volatility
- dY_t is the firm's cash flows
 - k is capital
 - $\alpha \in (0, 1)$ is a scaling parameter. Production exhibits diminishing returns to scale

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Dynamics of Capital Stock

$$egin{aligned} d eta_t &= ig(i_t - \delta eta_t ig) dt + \sigma_{\mathcal{K}} eta_t deta_t \ g(eta, i) &= rac{ heta}{2} ig(rac{eta}{eta} ig)^2 eta \end{aligned}$$

- dk_t is the net investment in the capital stock
 - *i*_t is amount invested
 - δ is the depreciation rate (%)
 - B is one-dimensional Brownian motion independent of W
- g(k, i) is the standard quadratic adjustment costs
 - θ measures the degree of adjustment cost

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Equity Issuance

$$\lambda(I) = \lambda_f + \lambda_p I$$

- *I* is the amount issued
- λ_p is the proportional component of issuance costs
- λ_f is the constant component of issuance costs
 - A fixed component makes issuance relatively more costly for small firms

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Cash Reserve Dynamics

$$dc_t = (r - \lambda_c)c_t dt + dY_t - i_t dt - g(k_t, i_t) dt - dD_t + dI_t.$$

- $(r - \lambda_c)$ is the return on cash less a liquidity premium

- dY_t is cash flows generated
- $-i_t d_t$ is investment
- $-g(k_t, i_t)$ is adjustment cost
- $-dD_t$ is the cumulative payout
- *dl*_t is cumulative issuance

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Default Time

$$\tau = \inf\{t \ge \mathbf{0} : \mathbf{C}_t < \mathbf{0}\}$$

- Default value at τ : ℓk_{τ}
- Capital stock fire sold k_{τ}
- Recover rate ℓ

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

The Firm's Problem

$$\sup_{i\geq 0,D,\{\sigma_j,I_j\}} E\Big[\int_0^\tau e^{-rs} dD_s - \sum_j e^{-r\sigma_j} \big(I_j + \lambda(I_j)\big) + \mathbf{1}_{\{\tau<\infty\}} e^{-r\tau} \ell k_\tau\Big],$$

- Equityholders choose investment, dividends, and equity issuance
- Impulse control problem with two state variables: capital size k and cash reserve c

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

HJB Equation

$$0 = \min \left\{ \underbrace{\frac{\partial_{c} V - 1}{\text{dividend payout}}}_{\text{dividend payout}}, \underbrace{\frac{V(k, c) - \sup_{l \ge 0} \left[V(k, c + l) - l - \lambda(l) \right]}_{\text{equity issuance}} \right\}$$

$$\underbrace{rV - \sup_{i \ge 0} \left\{ \left[i - \delta k \right] \partial_{k} V + \left[(r - \lambda_{c})c + k^{\alpha}\mu - i - g(k, i) \right] \partial_{c} V + \frac{1}{2}k^{2\alpha}\sigma^{2}\partial_{cc}^{2}V + \frac{1}{2}k^{2}\sigma_{k}^{2}\partial_{kk}^{2}V \right\}}_{\text{continuation}} \right\}$$

$$\text{At } c = 0:$$

$$0 = \min \left\{ \underbrace{\frac{V(k, 0) - \ell k}{\text{liquidation}}, \underbrace{V(k, 0) - \sup_{l \ge 0} \left[V(k, l) - l - \lambda(l) \right]}_{l \ge 0} \right\}$$

equity issuance

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Solution

- Numerically solved through policy iteration
 - Policy evaluation
 - Policy update
- We prove the uniqueness of the model solution and convergence of the numeric algorithm to the value function
 - Provide a comparison theorem for convergence

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Firm's stragegies

(a) Strategies in different regions

(b) Net investment heat map

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Firm's cash policy and firm size

(a) The density in the capital-cash (k, c) space

(b) Cash holdings are U-shaped in firm size

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Firm's issuance policy and firm size

(c) Issuance amounts are U-shaped in firm size (raising cash)

Model Firm

Model Solution

Mechanism •000 Model calibration

Conclusion

Marginal value of cash

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Empirical evidence

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

Larger firm has stronger precautionary motive

 $\mathsf{Cash}_{i,t} = \beta_1 \mathsf{VIX}_{i,t} + \beta_2 \mathsf{Firm} \ \mathsf{Size}_{i,t-1} + \beta_3 \mathsf{VIX}_{i,t} \times \mathsf{Firm} \ \mathsf{Size}_{i,t-1} + \varepsilon_{i,t}.$

	$Cash_{i,t}$	$\Delta Cash_{i,t}$
	(1)	(2)
VIX _t	0.025***	
	(0.006)	
$VIX_t \times Firm Size_{i,t-1}$	0.004**	
	(0.001)	
ΔVIX_t		0.002*
		(0.001)
$\Delta \text{VIX}_t \times \text{Firm Size}_{i,t-1}$		0.002***
		(0.000)
Firm $\text{Size}_{i,t-1}$	0.011	0.048^{***}
	(0.031)	(0.005)
% Adjusted R ²	2.9	0.4
Observations	66,181,226	65,086,184

Model Firm

Model Solution

Mechanism 000● Model calibration

Conclusion

Homothetic models

- Constant return to scale ($\alpha = 1$)
- fixed issuance cost proportional to size $(\lambda_f(k) \propto k)$

$$V(c, k) = kv(c/k)$$
 and $\partial_c V(c, k) = v'(c/k)$

Model Firm

Model Solution

Mechanism 0000 Model calibration •000 Conclusion

Simulated method of moments (SMM)

We use SMM to calibrate

- A: scaling parameter for cash flow μ and σ
- θ : investment adjustment cost parameter
- α : decreasing return to scale parameter
- λ_f : fixed issuance cost

Model Firm

Model Solution

Mechanism 0000 Model calibration •000 Conclusion

Simulated method of moments (SMM)

We use SMM to calibrate

- A: scaling parameter for cash flow μ and σ
- θ : investment adjustment cost parameter
- α : decreasing return to scale parameter
- λ_f : fixed issuance cost

For each parameter set $\Phi = (A, \theta, \alpha, \lambda_f)$

- solve firm's optimal policies
- simulate firm dynamics starting from an initial distribution (k_0, c_0) for 10 years
- treat simulations starting from the same point as trajectory of the same firm
- calculate 4 firm-level moments, denote cross-sectional average as $\Psi(\Phi)$

Model Solution

Mechanism 0000 Model calibration

Conclusio

SMM cont.

4 firm-level moments:

- average cash / capital
- standard deviation of cash / capital
- percent change in capital
- average cash-flow / capital.

Denote $\{X_i\}_{i=1,...,N}$ the set of firm-level data.

$$\Psi_D = \frac{1}{N} \sum_{i=1}^N X_i$$

.

Model Solution

Mechanism 0000 Model calibration

Conclusion

SMM cont.

4 firm-level moments:

- average cash / capital
- standard deviation of cash / capital
- percent change in capital
- average cash-flow / capital.

Denote $\{X_i\}_{i=1,...,N}$ the set of firm-level data.

$$\Psi_D = \frac{1}{N} \sum_{i=1}^N X_i$$

.

First step optimization:

$$\widetilde{\Phi} = \text{arg min}_{\Phi}(\Psi(\Phi) - \Psi_{\mathcal{D}})'(\Psi(\Phi) - \Psi_{\mathcal{D}})$$

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

SMM cont. Update weight matrix \widehat{W}

$$\widehat{W}^{-1} = \Omega_D + (\Psi(\widetilde{\Phi}) - \Psi_D)(\Psi(\widetilde{\Phi}) - \Psi_D)',$$

where Ω_D is the covariance matrix of $\{X_i\}_{i=1,...,N}$

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

SMM cont.

Update weight matrix \widehat{W}

$$\widehat{W}^{-1} = \Omega_D + (\Psi(\widetilde{\Phi}) - \Psi_D)(\Psi(\widetilde{\Phi}) - \Psi_D)'$$
,

where Ω_D is the covariance matrix of $\{X_i\}_{i=1,...,N}$ Second step optimization:

$$\widehat{\Phi} = {\mathsf{arg}} \; {\mathsf{min}}_\Phi(\Psi(\Phi) - \Psi_{\mathcal{D}}) \widehat{\boldsymbol{\mathcal{W}}}(\Psi(\Phi) - \Psi_{\mathcal{D}})'$$

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion

SMM cont.

Update weight matrix \widehat{W}

$$\widehat{W}^{-1} = \Omega_{\mathcal{D}} + (\Psi(\widetilde{\Phi}) - \Psi_{\mathcal{D}})(\Psi(\widetilde{\Phi}) - \Psi_{\mathcal{D}})'$$
,

where Ω_D is the covariance matrix of $\{X_i\}_{i=1,...,N}$ Second step optimization:

$$\widehat{\Phi} = {\rm arg} \ {\rm min}_\Phi(\Psi(\Phi) - \Psi_{\mathcal{D}}) \widehat{\textit{W}}(\Psi(\Phi) - \Psi_{\mathcal{D}})'$$

The asymptotic distribution of $\widehat{\Phi}$ is given by

$$\sqrt{\textit{N}}(\widehat{\Phi} - \Phi_0) \sim \textit{N}(0, \Omega),$$

where Ω is determined by gradient of $\Psi(\Phi)-\Psi_{\textit{D}}$ and $\widehat{\textit{W}}$

Model Solution

Mechanism 0000 Model calibration

Calibrated model

Panel A: Calibrated Parameters	ted Parameters
--------------------------------	----------------

Investment adjustment cost (θ)	0.100	(0.0002)
Diminishing returns to scale (α)	0.850	(0.0003)
Fixed component of issuance costs (λ_f)	0.072	(0.0002)
Scale parameter for the cash flow parameters μ and σ (A)	0.750	(0.0002)

Panel B: In Sample Moments

	Sample	Model
Avg. firm-level mean $Cash_t/(Total Assets_t-Cash_t)$ (%)	51.0	47.0
Avg. firm-level standard deviation of $Cash_t/(Total Assets_t-Cash_t)$ (%)	30.5	34.3
Avg. firm-level mean percentage change in Total Assets _t -Cash _t (%)	14.2	12.4
Avg. firm-level mean Cash $Flow_t/(Total Assets_{t-1}-Cash_{t-1})$ (%)	18.7	17.6

Panel C: Out of Sample Moment

	Sample	Model
β (Cash, Capital ²)	0.034	0.028

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion • o

Conclusion

Dynamic firm model that is not homothetic in size: two-state model

- Decreasing return to scale + costly equity financing
- strong investment motive among small firms, strong heging motive among big firms
- firm cash holding is U-shaped in firm size
- firm equity issuance size is U-shaped in firm size

Model Firm

Model Solution

Mechanism 0000 Model calibration

Conclusion 0

