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Motivation: Central Risk Book (CRB)
@ Centralized trading unit recently established in many large banks,
trading firms

Options

Client Desk

CRB aggregates order flow

Market from other business units

R O e o within the organization
(in-flow)

Retail
D

Program
Trading

@ In-flow is a stochastic process. Uncontrolled.

o CRB nets opposite orders (internalization)
e Unwinds outstanding positions in the market (out-flow)

— Optimal execution problem for a stochastic position

@ Another use case: market maker aggressively unwinding inventory
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Some Stylized Facts to Capture

@ FX dealers achieve high double-digit internalization rates
Bank of England '14

@ For institutional size orders in large cap stocks,

~ 30 bps of price impact costs
~ 5 bps of instantaneous costs
Nasdaq Guide for Trading Interns '22

@ Intraday impact decay: half of a trade’s impact dissipates over 1-2 h
Horst et al. '19, Muhle-Karbe et al. '22

@ Price impact parameters vary intraday
Cont et al. '13, Fruth et al. '13

@ Volume in closing auction is a double-digit percentage of total
Bouchaud et al. '18

4/33



Deliverables

@ Flexible model that can be calibrated to a particular flow

@ Principled, implementable unwind strategy
Guarantee for no-price-manipulation
Formula for expected cost

@ Sensitivity to in-flow characteristics
Misspecification analysis
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Outline

@ Model and Synopsis of Results
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Model

Finite horizon T > 0 (one trading day)

Cumulative in-flow orders: process Z,

dZt = _92t dt + O'th, Z() =Zz

Can be mean-reverting or trending. Historical internal data

Model is tractable for general martingale driver

Cumulative out-flow process @ is our control

Choose @ such as to minimize expected transaction cost

Liquidation constraint Q1 = Z1
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Transaction Costs

Two reasons to hold inventory:
@ Increase chance of netting, reduce spread cost

@ Unwind slowly to reduce impact

Transaction cost modeling:
o S; “unaffected" market price
e Assumption: S is a martingale

e P = P(Q,S) actual execution price

_
/ P, dQ;
0

@ Execution cost
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Instantaneous cost
@ Execution price Py = §5; + %th with e >0

@ Execution cost

T T 1T
J/P Py dQ: = d/r St dQe + €‘J/p Q2 dt.
0 0 2 Jo

@ Imposes absolutely continuous trading

Bertsimas & Lo '98, Almgren & Chriss '01, ...

Persistent (decaying) impact
@ Impact process dY; = =Yy dt + A dQ:
@ Execution price Py = S5; + %(Yt_ +Y:)

@ Execution cost

T T T 1
/ Ptdotz/ stdot+/ Ye dQc+ 5[V, Qlr.
0 0 0

Obizhaeva & Wang '13, ...
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Transaction Cost Model

@ Regular LOB trading for t € (0, T)

@ Both instantaneous cost and persistent impact cost (permanent cost)
Graewe & Horst '17

@ Absolutely continuous trading during the day, t € (0, T)

@ Opening auction (cross) at t =0
@ Closing auction (cross) att =T
e No instantaneous cost (no spread), only impact cost

— Block trades in the auctions

@ Generic trading strategy Q is a triplet (Jo, (g¢), J7):

Jo=0Q, q=Q, te(0,T), Jr=AQr
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(]

Impact process
dYt = _ﬁyt dt+Ath, Yof =y
Execution price

S+ LYo+ Yy, tef{o, T}
S+ Vet Leqr, te (0, 7).

Expected execution cost

T T
C(Jo,q,J7)=E [/ P: th} =K [P()Jo -l—/ P:q: dt + PtJr
0 0

Problem: minimize C(Jy, q, J7) subject to Qr = Z1
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Synopsis

@ Semi-explicit optimal strategy

o Intra-day trading speed has feedback-form

Gr = e Xe + 8¢ Ye + he Z; ‘

Xi ... inventory, Y;... impact state, Z;... cum. in-flow

o Time-dependent coefficients f;, g;, h; determined by ODE
(closed form for constant liquidity parameters)

@ h; is the adjustment to stochastic in-flow
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Synopsis

Having a computable model allows us to study (model-dependent) trading
metrics from an input—output perspective

Core trading metrics strongly depend on in-flow characteristics:
@ Momentum requires more aggressive trading, increasing costs.
Reversion leads to more internalization and more warehousing
o Misspecification: overestimating momentum sharply increases costs

@ Expected trading costs (per order notional) are minimized at a
particular in-flow volatility
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Example Paths

Time series of in-flow (ADV%) Time series of out-flow (ADV%) Time series of inventory (ADV%)
5]
20 201
o
104 104 -5
0 104
0
T . T T . T . — 15 . . T .
10 12 14 16 10 12 14 16 10 12 14 16
Time Time Time

Two realizations of the same model (6 = 0) illustrating extreme regimes.
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Outline

© Solution
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Solution Strategy

o Fix arbitrary Jy and g: outstanding position before closing auction has

to be the final block trade: J+ = Q1_ — Z7_

@ Replace liquidation constraint by cost of that block trade

@ After reformulation, that cost is a function of the terminal states:

standard LQ control problem

— Solution g* and cost C(Jo, %, J7)

e Finally, optimize that cost C(Jy, g, JT) over Jy
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Rewriting the Execution Cost

Let (Jo, g, JT) € A. Define state processes (Xt, Yy, Zt)tefo, 1] bY

dX; = g; dt — dZ;, Xo=J—z outstanding position
dYf = (—=BYf +Aqe)dt, Y5 =y+ AJh  impact state
dZ; = —0Zydt + o dWy, Zog =z cumulative in-flow

The expected execution cost is

1 TT28, eva 2 Lo ye 2
Cﬂbgpfﬂ::JELA VP +eqt| a1 (YF - A7)

2
y
LY 4
) TT}
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Dynamic Programming

e Start at time t, initial states (x,y, x):

dXs = gs ds — dZs, Xi = x outstanding position
dYE =(—BYS+Ags)ds, YF=y  impact state
dZs = —0Zsds +odW,, Zi==z cumulative in-flow

@ Auxiliary LQ problem

1 T/B, e 1
v(t,x,y,z):n;fzIE{/t <)\(YS)2+25q§>ds+ (Y7 - AXT)2}

@ Quadratic value function v

@ Linear optimal feedback control: g*(t,x,y,z) = fix + gty + h:z
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Time-varying Market Parameters

e Liquidity increases over the course of the trading day (regular hours)
— Time-dependent \;

@ Auctions empirically more liquid than adjacent regular trading

@ Also make e, 3 time-dependent (bounded)

@ A, e+ bounded away from zero

Fast increase in liquidity can give rise to arbitrage (“price manipulation”)
Huberman & Stanzl '04

e E.g., suppose 3,6 =0 and Ay, > Ay, for some tp < tg
— Buy at tp and sell at t;. Or: Sell at ty and buy at t;.
o In general, trade-off between /3 and A

17/33



Parameter Restrictions

o )\ differentiable (regular hours)

@ A\g_ for opening auction
@ Assumption:
268: +4: >0 (Fe:=At/Ae) and Ao < Ao
Fruth, Schéneborn & Urusov '14

@ We use A1 for the closing auction (liquidity jump causes arbitrage)
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Execution Cost

For any (Jo, g, JT) € A, the expected execution cost is

1 T 12B: + 5 1
C(Jo, q, JT) =-E / Bt ,Yt(ytc)z + atqf dt + 7(Y—f— — )\7‘)(7‘)2
2\ Jo At AT

1 1 2
+(Y5)? [>\0— - )\0] - )f;i_ +5TZT},

where (X:, Y, Zt)tejo, 1) are defined by

dXt:qtdt—dZt, XOZJ[)—Z
dY§ = (=B: Y + Atqy) dt, Yy =Y+ Ao-Jo
dZt: —QtZt dt+0t th, ZO =Zz

@ Ao— < Ao and 203; + 4+ > 0 make problem (strictly) convex
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(No) Price Manipulation

There is no “price manipulation” strategy:

Corollary: Let Z=0and y =0. Then @ = 0 is the only admissible
strategy with zero cost.

Remark:

@ Starting with non-zero inventory, round trips could nevertheless be
profitable: “transaction-triggered price manipulation”
Alfonsi, Schied & Slynko '11, Gatheral, Schied & Slynko '12

@ Starting with non-zero impact state, it will often be optimal to trade,
evenif Z=0
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Solution on (0, T) for fixed Jy

Fix t € [0, T) and consider (X, Y5, Zs)sefe, 1) Started at (x,y,z). Then

1 12 )
v(t,x,y,z) :=inf ZE / M(Y;)z + Esqg] ds
q 2 t )\5

1
+ 5 vF - arxr
AT

is of the form

1 1 1
v(t,x,y,z) = EAtXZ + Bixy + 5(.})/2 + Dixz + Eryz + 5/—}22 +

where A;, B:, ..., K; are defined below.
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Riccati ODE System

Proposition: The Riccati ODE system

Af = Et._l(At + )\ Bt)27 AT = )\T

Bt—Et (At+)\ B:)(B: + A Ce) + B¢ By, Br = -1

Ce =7 (Br + A\t Ce)? + 2B: Ce — A H(2Be + A1), Cr =\

D: = &7 Y(Ar + AtB:)(Ds + MEr) — 0:(Ar — Dy), Dy =0

Et =& 1(Bt + At G )(De + A\eEr) — 9t(Bt — E)+ BiEr, ET =

Fi = e; Y (Dy + M\tEp)? — 204(D; — Fy), Fr=0
—O't(A 2Dt+Ft)/ KT:O

\

has a unique solution (A¢, B, Ct, Et, Ft, Kt)te[o,T]-
Wonham '68, Graewe & Horst '17
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Optimal Strategy

The unique optimal control (in feedback form) is

(q*(t,x,y,2) = fix + gy + hez|

where

fo .= —e; 1 (At + \¢Bt)
gt = —e; H(Br + M\t Cr)
ht = —E;I(Dt + AtEt)

e f,g only depend on market parameters, not on in-flow characteristics
@ h also depends on mean reversion 6, but not on o
= h is the adjustment for random in-flows

@ o only affects the cost

@ Closed-form solution for time-independent liquidity parameters
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Properties of the Optimal Strategy

(q*(t,x,y,2) = fix + gy + hez|

e h=0if # =0 (martingale in-flow)
— h is the adjustment to in-flows with reversion/momentum

— no adjustment for “truthtelling” flow

Under the additional condition 5+ 4 > 0 (vs. 28 4+ % > 0):

@ h is monotone decreasing wrt. in
@ h>0if # <0 (momentum): overtrading
@ h<0if & >0 (mean-reversion)

@ g < 0: high impact state incentivizes selling and vice versa
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Properties of the Optimal Strategy (2)

(a7, x,y,2) = fox + gy + hez]

Again, under 5+ 4 > 0:

e f < 0: high inventory incentivizes selling and vice versa

Whereas:
o If +4<0<28+4, then f; >0 for T — t small

@ g* trades in the “wrong” direction even if y = 0 and no future in-flow

“transaction-triggered price manipulation”
Fruth, Schéneborn & Urusov '14

@ In practice, enforce 3 + 4 > 0 when using estimated parameters

25/33



Optimal Initial Block Trade

Proposition: The optimal block trade Jy for the opening auction is

go— + No— fo— — ho—
Jo=— + z
0 o+ (8- +m0.)”  fo+ro (8o +m0)
where ng_ 1= —551(1 — Xo—/X0) <0,

go— +mo— <0 and fo— + Ao— (go— +mo—) < O.

If B¢+ 4+ > 0 for t € [0, T], then fo_ — hg— < 0.
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Outline

© Numerical Simulations
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Trading Metrics

@ Key metrics such as impact cost are model-dependent

e Having a reduced-form model allows us to study trading metrics from
an input—output perspective
@ Practitioners express many quantities per order notional

= Our experiments use a finite-variation in-flow

@ Internalization is a key metric:

total variation of out-flow

internalization rate = 1 — i _
total variation of in-flow

~ fraction of in-flow orders netted

@ model-independent and client-centric; often used as a proxy for cost
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In-Flow Autocorrelation: Sample Paths

Time series of in-flow (ADV%) Time series of out-flow (ADV%)
35 /\/ A 35 i
loa — —
30 //L A L~ 30 ,/
| / g
J 25 e
2 r ~
20 20 /
15 15 /
10 10 /
5 5 /’/
[
0 0
10 1 12 13 13 5 16 10 1 12 3 1 5 16
Time Time
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Sensitivity to flow autocorrelation (§ = —1,0,1) for an initial inventory (z) and
daily flow volatility () of 10% ADV: sample path.
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In-Flow Autocorrelation: Averages

Parameter 6 | In-flow Out-flow Spread Cost Impact cost Closing trade Internalization
scans (ADV%) (ADV%) (bps) (bps) (% total) (%)

momentum -1 61 31 4.9 42.6 17 51

martingale 0 46 15 1.7 145 21 68
reversal 1 52 9 0.5 4.8 27 84

@ Higher autocorrelation leads to more aggressive unwinding

@ Internalization drops from 84% to 51%: the strategy trades 3x more
volume on the market

@ Impact costs increase from 5bps to 43bps: the strategy pays 8x more
trading costs

@ The closing jump trade shrinks from 27% to 17% of the outflow: the
strategy doesn't warehouse as much into the close
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In-Flow Autocorrelation: Distributions

Total variation of in-flow (ADV%) Internalization (%) Impact cost per in-flow (bps)
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In-Flow Volatility

40

Internalization (%) across flow vol Closing trade as a percent of out-flow (%) across flow vol
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Average metrics’ sensitivity to in-volatility (o) for an initial inventory (z) of 3%
ADV and different autocorrelation values ().
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In-Flow Volatility

@ some flow volatility reduces cost per order notional, by promoting
internalization

@ costs increase with too much flow volatility

H 0 \-1 -05 0 05 1 H

optimal o/z (%) [99 79 55 35 17
Internalization (%) |55 65 72 77 82

Optimal in-flow volatility, as a percentage of inventory, across various 6
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Misspecification
The P&L depends on 6, o, but the strategy only depends on 6. Therefore,
there are no misspecification costs for o.

Total cost per in-flow (bps) Internalization (%) Impact cost per out-flow (bps)
10 ] /,//,,,,/”” 5751
as 55.0
94
52.5
i 87 i i
1 1 1
1 1 50.0 |
89 86 1
47.51
851
I 45.0 1
_/ 847 42.5 1
6
actual theta 837 actual theta 40.0 4 actual theta
T T T T T T T T T T T T
-1.0 =0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
misspecified theta misspecified theta misspecified theta

Actual # = 0: true in-flow is martingale

Overly aggressive trading sharply increases transaction cost and misses
netting opportunities. Preferable to underestimate momentum, causing less

aggressive trading.
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Thank you
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