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Motivation: Central Risk Book (CRB)
Centralized trading unit recently established in many large banks,
trading firms

CRB aggregates order flow
from other business units
within the organization
(in-flow)

In-flow is a stochastic process. Uncontrolled.

CRB nets opposite orders (internalization)
Unwinds outstanding positions in the market (out-flow)

→ Optimal execution problem for a stochastic position

Another use case: market maker aggressively unwinding inventory
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Some Stylized Facts to Capture

FX dealers achieve high double-digit internalization rates
Bank of England ’14

For institutional size orders in large cap stocks,
≈ 30 bps of price impact costs
≈ 5 bps of instantaneous costs

Nasdaq Guide for Trading Interns ’22

Intraday impact decay: half of a trade’s impact dissipates over 1-2 h
Horst et al. ’19, Muhle-Karbe et al. ’22

Price impact parameters vary intraday
Cont et al. ’13, Fruth et al. ’13

Volume in closing auction is a double-digit percentage of total
Bouchaud et al. ’18
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Deliverables

Flexible model that can be calibrated to a particular flow

Principled, implementable unwind strategy
Guarantee for no-price-manipulation
Formula for expected cost

Sensitivity to in-flow characteristics
Misspecification analysis
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Outline

1 Model and Synopsis of Results

2 Solution

3 Numerical Simulations
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Model

Finite horizon T > 0 (one trading day)
Cumulative in-flow orders: process Z ,

dZt = −θZt dt + σ dWt , Z0 = z

Can be mean-reverting or trending. Historical internal data
Model is tractable for general martingale driver

Cumulative out-flow process Q is our control
Choose Q such as to minimize expected transaction cost
Liquidation constraint QT = ZT
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Transaction Costs

Two reasons to hold inventory:
Increase chance of netting, reduce spread cost
Unwind slowly to reduce impact

Transaction cost modeling:
St “unaffected" market price
Assumption: S is a martingale
Pt = Pt(Q,S) actual execution price
Execution cost ∫ T

0
Pt dQt
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Instantaneous cost
Execution price Pt = St +

1
2εQ̇t with ε > 0

Execution cost∫ T

0
Pt dQt =

∫ T

0
St dQt +

1
2
ε

∫ T

0
Q̇2

t dt.

Imposes absolutely continuous trading
Bertsimas & Lo ’98, Almgren & Chriss ’01, . . .

Persistent (decaying) impact
Impact process dYt = −βYt dt + λ dQt

Execution price Pt = St +
1
2(Yt− + Yt)

Execution cost∫ T

0
Pt dQt =

∫ T

0
St dQt +

∫ T

0
Yt− dQt +

1
2
[Y ,Q]T .

Obizhaeva & Wang ’13, . . .
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Transaction Cost Model

Regular LOB trading for t ∈ (0,T )

Both instantaneous cost and persistent impact cost (permanent cost)
Graewe & Horst ’17

Absolutely continuous trading during the day, t ∈ (0,T )

Opening auction (cross) at t = 0
Closing auction (cross) at t = T

No instantaneous cost (no spread), only impact cost
→ Block trades in the auctions

Generic trading strategy Q is a triplet (J0, (qt), JT ):

J0 = ∆Q0, qt = Q̇t , t ∈ (0,T ), JT = ∆QT
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Impact process

dYt = −βYt dt + λ dQt , Y0− = y

Execution price

Pt :=

{
St +

1
2(Yt− + Yt), t ∈ {0,T}

St + Yt +
1
2εqt , t ∈ (0,T ).

Expected execution cost

C(J0, q, JT ) = E
[∫ T

0
Pt dQt

]
= E

[
P0J0 +

∫ T

0
Ptqt dt + PT JT

]
Problem: minimize C(J0, q, JT ) subject to QT = ZT

10/33



Synopsis

Semi-explicit optimal strategy
Intra-day trading speed has feedback-form

qt = ftXt + gtYt + htZt

Xt . . . inventory, Yt . . . impact state, Zt . . . cum. in-flow

Time-dependent coefficients ft , gt , ht determined by ODE
(closed form for constant liquidity parameters)
ht is the adjustment to stochastic in-flow
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Synopsis

Having a computable model allows us to study (model-dependent) trading
metrics from an input–output perspective

Core trading metrics strongly depend on in-flow characteristics:

Momentum requires more aggressive trading, increasing costs.
Reversion leads to more internalization and more warehousing
Misspecification: overestimating momentum sharply increases costs
Expected trading costs (per order notional) are minimized at a
particular in-flow volatility
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Example Paths

Two realizations of the same model (θ = 0) illustrating extreme regimes.
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Outline

1 Model and Synopsis of Results

2 Solution

3 Numerical Simulations
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Solution Strategy

Fix arbitrary J0 and q: outstanding position before closing auction has
to be the final block trade: JT = QT− − ZT−

Replace liquidation constraint by cost of that block trade

After reformulation, that cost is a function of the terminal states:
standard LQ control problem

→ Solution q∗ and cost C(J0, q
∗, J∗T )

Finally, optimize that cost C(J0, q, JT ) over J0

14/33



Rewriting the Execution Cost

Let (J0, q, JT ) ∈ A. Define state processes (Xt ,Y
c
t ,Zt)t∈[0,T ] by

dXt = qt dt − dZt , X0 = J0 − z outstanding position
dY c

t = (−βY c
t + λqt) dt, Y c

0 = y + λJ0 impact state
dZt = −θZt dt + σt dWt , Z0 = z cumulative in-flow

The expected execution cost is

C(J0, q, JT ) =
1
2
E
{∫ T

0

[
2β
λ
(Y c

t )
2 + εq2

t

]
dt +

1
λ
(Y c

T − λXT )
2

−y2

λ
+ STZT

}
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Dynamic Programming

Start at time t, initial states (x , y , x):
dXs = qs ds − dZs , Xt = x outstanding position
dY c

s = (−βY c
s + λqs) ds, Y c

t = y impact state
dZs = −θZs ds + σ dWs , Zt = z cumulative in-flow

Auxiliary LQ problem

v(t, x , y , z) = inf
q

1
2
E
{∫ T

t

(
β

λ
(Y c

s )
2 +

1
2
εq2

s

)
ds +

1
2λ

(Y c
T − λXT )

2
}

Quadratic value function v

Linear optimal feedback control: q∗(t, x , y , z) = ftx + gty + htz
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Time-varying Market Parameters

Liquidity increases over the course of the trading day (regular hours)
→ Time-dependent λt

Auctions empirically more liquid than adjacent regular trading

Also make εt , βt time-dependent (bounded)
λt , εt bounded away from zero

Fast increase in liquidity can give rise to arbitrage (“price manipulation”)
Huberman & Stanzl ’04

E.g., suppose β, ε ≡ 0 and λt0 > λt1 for some t0 < t1

→ Buy at t0 and sell at t1. Or: Sell at t0 and buy at t1.
In general, trade-off between β and λ̇
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Parameter Restrictions

λ differentiable (regular hours)
λ0− for opening auction

Assumption:

2βt + γ̇t > 0 (γ̇t := λ̇t/λt) and λ0− ≤ λ0

Fruth, Schöneborn & Urusov ’14

We use λT for the closing auction (liquidity jump causes arbitrage)

18/33



Execution Cost

For any (J0, q, JT ) ∈ A, the expected execution cost is

C(J0, q, JT ) =
1
2
E
{∫ T

0

[
2βt + γ̇t

λt
(Y c

t )
2 + εtq

2
t

]
dt +

1
λT

(Y c
T − λTXT )

2

+ (Y c
0 )

2
[

1
λ0−

− 1
λ0

]
− y2

λ0−
+ STZT

}
,

where (Xt ,Y
c
t ,Zt)t∈[0,T ] are defined by
dXt = qt dt − dZt , X0 = J0 − z

dY c
t = (−βtY

c
t + λtqt) dt, Y c

0 = y + λ0−J0

dZt = −θtZt dt + σt dWt , Z0 = z

λ0− ≤ λ0 and 2βt + γ̇t > 0 make problem (strictly) convex
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(No) Price Manipulation

There is no “price manipulation” strategy:

Corollary: Let Z ≡ 0 and y = 0. Then Q ≡ 0 is the only admissible
strategy with zero cost.

Remark:
Starting with non-zero inventory, round trips could nevertheless be
profitable: “transaction-triggered price manipulation”
Alfonsi, Schied & Slynko ’11, Gatheral, Schied & Slynko ’12

Starting with non-zero impact state, it will often be optimal to trade,
even if Z ≡ 0
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Solution on (0,T ) for fixed J0

Fix t ∈ [0,T ) and consider (Xs ,Y
c
s ,Zs)s∈[t,T ] started at (x , y , z). Then

v(t, x , y , z) := inf
q

1
2
E
{∫ T

t

[
2βs + γ̇s

λs
(Y c

s )
2 + εsq

2
s

]
ds

+
1
λT

(Y c
T − λTXT )

2
}

is of the form

v(t, x , y , z) =
1
2
Atx

2 + Btxy +
1
2
Cty

2 + Dtxz + Etyz +
1
2
Ftz

2 + Kt

where At ,Bt , . . . ,Kt are defined below.
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Riccati ODE System

Proposition: The Riccati ODE system

Ȧt = ε−1
t (At + λtBt)

2, AT = λT

Ḃt = ε−1
t (At + λtBt)(Bt + λtCt) + βtBt , BT = −1

Ċt = ε−1
t (Bt + λtCt)

2 + 2βtCt − λ−1
t (2βt + γ̇t), CT = λ−1

T

Ḋt = ε−1
t (At + λtBt)(Dt + λtEt)− θt(At − Dt), DT = 0

Ėt = ε−1
t (Bt + λtCt)(Dt + λtEt)− θt(Bt − Et) + βtEt , ET = 0

Ḟt = ε−1
t (Dt + λtEt)

2 − 2θt(Dt − Ft), FT = 0

K̇t = −σ2
t (At − 2Dt + Ft)/2, KT = 0

has a unique solution (At ,Bt ,Ct ,Et ,Ft ,Kt)t∈[0,T ].
Wonham ’68, Graewe & Horst ’17
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Optimal Strategy
The unique optimal control (in feedback form) is

q∗(t, x , y , z) = ftx + gty + htz

where

ft := −ε−1
t (At + λtBt)

gt := −ε−1
t (Bt + λtCt)

ht := −ε−1
t (Dt + λtEt)

f , g only depend on market parameters, not on in-flow characteristics
h also depends on mean reversion θ, but not on σ

⇒ h is the adjustment for random in-flows
σ only affects the cost

Closed-form solution for time-independent liquidity parameters
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Properties of the Optimal Strategy

q∗(t, x , y , z) = ftx + gty + htz

h = 0 if θ ≡ 0 (martingale in-flow)
→ h is the adjustment to in-flows with reversion/momentum
→ no adjustment for “truthtelling” flow

Under the additional condition β + γ̇ > 0 (vs. 2β + γ̇ > 0):

h is monotone decreasing wrt. in θ

h ≥ 0 if θ ≤ 0 (momentum): overtrading
h ≤ 0 if θ ≥ 0 (mean-reversion)

g ≤ 0: high impact state incentivizes selling and vice versa
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Properties of the Optimal Strategy (2)

q∗(t, x , y , z) = ftx + gty + htz

Again, under β + γ̇ > 0:

f ≤ 0: high inventory incentivizes selling and vice versa

Whereas:

If β + γ̇ < 0 < 2β + γ̇, then ft > 0 for T − t small
q∗ trades in the “wrong” direction even if y = 0 and no future in-flow
“transaction-triggered price manipulation”
Fruth, Schöneborn & Urusov ’14

In practice, enforce β + γ̇ > 0 when using estimated parameters
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Optimal Initial Block Trade

Proposition: The optimal block trade J0 for the opening auction is

J0 = − g0− + η0−
f0− + λ0− (g0− + η0−)

y +
f0− − h0−

f0− + λ0− (g0− + η0−)
z ,

where η0− := −ε−1
0 (1 − λ0−/λ0) ≤ 0,

g0− + η0− < 0 and f0− + λ0− (g0− + η0−) < 0.

If βt + γ̇t > 0 for t ∈ [0,T ], then f0− − h0− < 0.
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Outline

1 Model and Synopsis of Results

2 Solution

3 Numerical Simulations
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Trading Metrics

Key metrics such as impact cost are model-dependent
Having a reduced-form model allows us to study trading metrics from
an input–output perspective
Practitioners express many quantities per order notional

⇒ Our experiments use a finite-variation in-flow

Internalization is a key metric:

internalization rate = 1 − total variation of out-flow
total variation of in-flow

≈ fraction of in-flow orders netted

model-independent and client-centric; often used as a proxy for cost
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In-Flow Autocorrelation: Sample Paths

Sensitivity to flow autocorrelation (θ = −1, 0, 1) for an initial inventory (z) and
daily flow volatility (σ) of 10% ADV: sample path.
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In-Flow Autocorrelation: Averages

Parameter θ In-flow Out-flow Spread Cost Impact cost Closing trade Internalization
scans (ADV%) (ADV%) (bps) (bps) (% total) (%)

momentum -1 61 31 4.9 42.6 17 51
martingale 0 46 15 1.7 14.5 21 68
reversal 1 52 9 0.5 4.8 27 84

Higher autocorrelation leads to more aggressive unwinding
Internalization drops from 84% to 51%: the strategy trades 3x more
volume on the market
Impact costs increase from 5bps to 43bps: the strategy pays 8x more
trading costs
The closing jump trade shrinks from 27% to 17% of the outflow: the
strategy doesn’t warehouse as much into the close
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In-Flow Autocorrelation: Distributions
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In-Flow Volatility

Average metrics’ sensitivity to in-volatility (σ) for an initial inventory (z) of 3%
ADV and different autocorrelation values (θ).
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In-Flow Volatility

some flow volatility reduces cost per order notional, by promoting
internalization
costs increase with too much flow volatility

θ -1 -0.5 0 0.5 1

optimal σ/z (%) 99 79 55 35 17
Internalization (%) 55 65 72 77 82

Optimal in-flow volatility, as a percentage of inventory, across various θ
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Misspecification
The P&L depends on θ, σ, but the strategy only depends on θ. Therefore,
there are no misspecification costs for σ.

Actual θ = 0: true in-flow is martingale

Overly aggressive trading sharply increases transaction cost and misses
netting opportunities. Preferable to underestimate momentum, causing less
aggressive trading.
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Thank you
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