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Outline of the Talk

1 Optimal Financial Decision Making
• Role of cost-efficiency
• Quantile Approach
• Towards a generalisation to the multivariate case...

2 Optimal Multivariate Financial Decision Making
• “Multivariate” cost-efficiency - Characterization of optimum
• Reduction to a one-dimensional problem
• Numerical approximation

3 Multivariate Risk Sharing via Quantile Approach
• Theoretical elements
• Example with a bivariate expected utility
• Example with a multivariate Yaari investor
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Cost-efficiency

• A portfolio/cash-flow/consumption with final payoff XT

(consumption only at time T ).

• A complete market

• Initial cost of XT is given by x0 = c(XT) =E[ξTXT].

A strategy X ?
T (or a payoff) with cdf F is cost-efficient

if any other strategy that generates the same distribution F at the
time horizon T costs at least as much, i.e., if it solves

min
{XT | XT∼F}

E[ξTXT ]

Carole Bernard Optimal Portfolio Choice via Quantiles 3/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

Explicit Representation of Cost-efficient Payoffs

Theorem

Consider the cost-efficiency problem:

min
{XT | XT∼F}

E[ξTXT ]

Assume ξT is continuously distributed, then the optimal
strategy is

X?T = F−1 (1− Fξ (ξT )) .

Note that X?T ∼ F and X?T is a.s. unique solution.

Intuition of the proof: E[ξTXT ]−E[ξT ]µF
std(ξT )σF

= corr(ξT ,XT )

Carole Bernard Optimal Portfolio Choice via Quantiles 4/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

Cost-efficiency & Portfolio Choice (General preferences)

V (·) denotes the objective function of the agent to maximize
(Expected utility, Value-at-Risk, Cumulative Prospect Theory...).

max
XT | E[ξTXT ]=ω0

V (XT ). (1)

Preferences V (·) are assumed to be

• non-decreasing: XT > YT a.s.⇒ V (XT ) > V (YT )

• law-invariant: XT =d YT ⇒ V (XT ) = V (YT )

Equivalently, V (·) respects First-order stochastic dominance

Theorem: Optimal strategies are cost-efficient

If an optimum X ?
T of (1) exists, let F be its cdf. Then, X ?

T is the
cheapest way (cost-efficient) to achieve F at T , i.e.
X ?
T = F−1(1− Fξ(ξT )) where Fξ is the cdf of ξT .
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Optimal Portfolio via Quantiles

Let V (·) be non decreasing and law invariant, then if there
exists a solution to

max
XT | E[ξTXT ]=ω0

V (XT ), (2)

then Problem (2) boils down to searching a quantile

sup
F−1 | E[ξTF−1(1−FξT (ξT ))]=ω0

V
(
F−1 (1− FξT (ξT ))

)
.

See e.g., He and Zhou: Optimal portfolio via quantiles, Ma.Fi. 2011,
among many other authors who used quantiles to solve portfolio selection
problems: Dybvig (1988), Föllmer and Schied (2004), Carlier and Dana
(2006), Jin and Zhou (2008) and many more after 2011...
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Multivariate Risk Sharing (without a market)

Define for each variable S ,

Ad(S) :=

{
X :

d∑
i=1

Xi = S

}

Assume that we know how to solve

sup
X∈Ad (S)

V (X1, ...,Xd). (3)

Denote by
(Y1(S), ...,Yd(S))

the optimal solution to (3).
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Multivariate Risk Sharing (without a market)
Some examples in the literature

• Borch (1962) when V (X1, ...,Xd) =
∑d

i=1 E[Ui (Xi )].

• Inf convolution of convex risk measures Barieu and El Karoui
(2005); for law invariant monetary utility by Jouini,
Schachermayer and Touzi (2008)

• Some further generalizations by Acciaio (2007), Filipovic and
Svindland (2008) and Carlier, Dana, and Galichon (2012).

• Inf convolution of quantile risk measures: Embrechts, Liu and
Wang (2018).

• ...
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Towards a Generalization to the Multivariate Case
(Bernard, De Gennaro, Vanduffel EJOR 2023)

Proposition

Consider an investor with law invariant preferences and who is
maximizing her objective function V

(
X1, . . . ,Xd

)
with a given

initial budget w0, i.e., E
[
ξT
∑d

i=1 Xi

]
= w0. Also, assume that

V (·) is strictly increasing in at least one of the d
components. Then the optimal investment for this investor, when
it exists, is multivariate cost-efficient, i.e., it solves

min(
X1,...,Xd

)
∼G

E

[
ξT

d∑
i=1

Xi

]
,

for some joint distribution G .

(all Xi , i = 1, . . . , d , share same investment horizon T , so we omit it)
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Sufficient Condition for Multivariate Cost-efficiency

Proposition

A (multidimensional) payoff is multivariate cost-efficient if

cov(X1 + X2 + ...+ Xd , ξT) (4)

is minimum.

This allows us to build a numerical approximation for the optimal
solution of a multivariate cost-efficiency problem.
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Quantile Formulation of the Multivariate Portfolio Choice

From multivariate cost-efficiency, if a portfolio X ∗1 ,X
∗
2 , ..,X

∗
d is

a solution to
sup

E[ξT
∑

i Xi ]=ω0

V (X1, ...,Xd)

then
∑

X ∗i = F−1S (1− FξT (ξT )) where FS is the cdf of
∑

X ∗i .

The optimal portfolio then solves

sup
F−1
S s.t. E[ξTF

−1
S (UT )]=ω0

V
(
Y1(F−1S (UT )), ...,Yd(F−1S (UT ))

)
where UT = 1− FξT (ξT ).

Carole Bernard Optimal Portfolio Choice via Quantiles 11/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

Quantile Formulation of the Multivariate Portfolio Choice

From multivariate cost-efficiency, if a portfolio X ∗1 ,X
∗
2 , ..,X

∗
d is

a solution to
sup

E[ξT
∑

i Xi ]=ω0

V (X1, ...,Xd)

then
∑

X ∗i = F−1S (1− FξT (ξT )) where FS is the cdf of
∑

X ∗i .

The optimal portfolio then solves

sup
F−1
S s.t. E[ξTF

−1
S (UT )]=ω0

V
(
Y1(F−1S (UT )), ...,Yd(F−1S (UT ))

)
where UT = 1− FξT (ξT ).

Carole Bernard Optimal Portfolio Choice via Quantiles 11/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

Numerical approach to solve for F−1S

• Step 1: Discretize the problem: ξT takes n values

ξ1 > ξ2 > ... > ξn

ξk := F−1ξT

(
n + 1− k − 0.5

n

)
, for k = 1, 2, . . . , n.

• Step 2: Formalize the optimization within a discrete setting.
The goal is to solve for (s1, s2, ..., sn).

max
(s1,s2,...,sn)∈A

Ṽ (s1, s2, ..., sn), (5a)

in which si := F−1S

(
i

n+1

)
and the admissible set A is

A =
{

(s1, s2, ..., sn) ∈ Rn
∣∣ ∑n

j=1
1
n [ξjsj ] = ω0 (budget)

}
.
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Numerical approach of the portfolio choice via quantiles

• Step 3: Translate the fact that for the optimal solution S and
ξT are anti-monotonic. To do so,

ξ1 > ξ2 > ... > ξn and s1 6 s2 6 ... 6 sn

si is an increasing sequence over the states translates in

s1 = z1 6 s2 = z1 + z2 6 ... 6 z1 + z2 + ...+ zn = sn

where the increasing constraint becomes simply zi > 0

max
(z1,z2,...,zn)∈Ã

Ṽ (z1, z2, ..., zn) , (6a)

Ã =
{

(z1, z2, ..., zn) ∈ Rn
+

∣∣ ∑n
i=1 ζizi = ω0 (budget constraint)

}
.

⇒ Solving the above optimization requires using a solver for n
dimensions.
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Convergence and accuracy of the algorithm

• Need a large n... impossible to solve without a good starting
guess!

• Trick: Start with very small n and then use this solution as
the starting value for the next step with 2n discretizations.

0X
(0)
T

0X
?
T

:=

0X
(M0)
T

1X
(0)
T

1X
?
T

:=

1X
(M1)
T

2X
(0)
T

2X
?
T

:=

2X
(M2)
T

Optimization Optimization Optimization

Interpolation:
n0 = 20 to n1 = 40

Interpolation:
n1 = 40 to n2 = 80

run: r = 0 run: r = 1 run: r = 2

Figure: Diagram of the algorithm
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Two Examples of Explicit Multivariate Portfolios

1 Expected multivariate utility : a sum of expected utility

2 Multivariate Yaari dual theory of choice : a sum of
distorted expectations

Both problems can be solved explicitly and allow us to check that
our numerical approach provides accurate solutions.
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Example in a Bivariate Expected Utility (theory)

Define Ua1 ,Ua2 are univariate exponential utility functions as

Uai (x) = −e−aix , i = 1, 2

and a1, a2, v1, v2 > 0.

Proposition: The optimal solutions X ?
1 and X ?

2 to the problem

max
(X1,X2)∈A

E [v1Ua1(X1) + v2Ua2(X2)] , (7)

with A := {(X1,X2) : E [ξT (X1 + X2)] = w0} are given by

(
X ?
1

X ?
2

)
=

 w0λ
?erT − 1

a1

(
rT − θ2T

2

)
− ln(ξT )

a1

w0 (1− λ?) erT − 1
a2

(
rT − θ2T

2

)
− ln(ξT )

a2

 (8)

with λ? =
ln
(

v1a1
v2a2

)
+a2w0erT

(a1+a2)w0erT
.
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Example in a Bivariate Expected Utility (numerical)

For any variable S , define A2(S) := {X : X1 + X2 = S}

sup
X∈A2(S)

−v1e−a1X1 − v2e
−a2X2 (9)

• The optimal bivariate risk sharing rule without a market
(solving (9) for any S)

X1 = Y1(S) = a + bS and X2 = Y2(S) = −a + (1− b)S

• Numerical solver to approximate the distribution of S .
Trick: do a very rough discretization with say n = 10, and
then solve, and then multiply by 2 the number of discretization
points using the previous solution as initial condition... etc
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Example in a Bivariate Expected Utility
a1 = 0.8 , a2 = 0.2 , v1 = 0.3 , v2 = 0.7
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Illustration of the convergence
a1 = 0.8 , a2 = 0.2, v1 = 0.3 , v2 = 0.7

RAE: relative absolute error (RAE) for the objective function
between the solution obtained numerically and the explicit solution.
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Another example: Yaari Dual Theory of Choice

An agent with payoff XT maximizes the distorted expectation
(Yaari utility). So the 1-d portfolio choice problem writes

sup
F−1
XT

s.t. E
[
ξTF

−1
XT

(1−FξT (ξT ))
]
=w0

∫ 1

0
h (u)F−1XT

(u) du, (10)

in which h is the weighting function; h (u) := g ′ (1− u) where g is
the distortion function.

Carole Bernard Optimal Portfolio Choice via Quantiles 20/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

An example of distorted expectation: RVaR

Let (α, β) ∈ [0, 1]2 be such that α 6 β. The Range
Value-at-Risk (RVaR) is then defined as

RVaRα,β (X ) =


1

β − α

∫ β

α
VaRu (X ) du if β > α

VaRα (X ) if β = α.

(Cont, Deguest, Scandolo (2010)).

In the RVaR context,

g (u) = min

{
max

{
u + β − 1

β − α
, 0

}
, 1

}
and h(u) =

1

β − α
1(α,β] (u)
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Multivariate Yaari Dual Theory of Choice

We consider as objective a sum of distorted expectations
(Yaari’s expectation).

V (X1,X2, ...,Xd) =
d∑

i=1

ρgi (Xi )

where

ρgi (Xi ) =

∫ 1

0
hi (u)F−1Xi

(u) du

in which hi is the weighting function; hi (u) := g ′i (1− u) where gi
is the distortion function.
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Sum of Distorted Expectations with a Financial
Market

Example: Multivariate Portfolio Problem

The multivariate portfolio choice problem under study writes as

sup
(X1,X2,...,Xd )∈A

d∑
i=1

ρgi (Xi ), (11)

where the admissible set A is

A =

{
(X1,X2, . . . ,Xd) s.t. Xi > 0, E

[
ξT

d∑
i=1

Xi

]
= w0

}
,

and w0 > 0 denotes the total budget that must be allocated in d
dimensions.

Carole Bernard Optimal Portfolio Choice via Quantiles 23/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

Explicit solution for the Yaari investor (d = 1)

The Yaari Ratio YR (c), ∀c > 0, is defined as

YR (c) =
g(p(c))

q(c)
,

where p (c) = P (ξT < c) and q (c) = E[ξT1ξT<c ]erT .

Theorem: Boudt-Dragun-Vanduffel (2022) or He-Jiang (2021):

The optimal solution to the problem (10) is explicit.

1 X ?
T = w0e

rT when supc>0 YR(c) 6 1;

2 otherwise, when supc>0 YR(c) > 1 and the supremum is
attained, it is

X ?
T =

w0

q(c?)
erT1ξT<c? , c∗ = arg maxc>0YR(c).
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Explicit solution (d = 2)

An example with the following parameters:
• For payoff X1: α1 = 0.65, β1 = 0.75, and max YR = 3.58 with c? = 0.89;

• For payoff X2: α2 = 0.6, β2 = 0.9, and max YR = 3.07 with c? = 0.92.

0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

10

12

For each unit of budget invested, X1 is always better than X2.
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Explicit solution (Example with sum of d = 2
RVaRs)

sup
(X1,X2)∈A

RVaRα1,β1(X1) + RVaRα2,β2(X2),

where A =
{

(X1,X2) ∈ X d
+ s.t. E [ξT (X1 + X2)] = w0

}
.

• Extreme risk sharing:
concentration of payoff in one
participant;

• No benefit of investing in
payoff X2.

• Digital option for X ?
1 ;

• Nothing for X ?
2 .

Carole Bernard Optimal Portfolio Choice via Quantiles 26/30



Introduction Quantile Approach MV Portfolio via Quantiles MV EU Example MV Yaari Example Conclusions

Proposition: Explicit MV portfolio with sum of Yaari utilities

Let Z ∗i be the solution to

sup
Z∈X+/E[ξTZ ]=ω0

ρgi (Z ).

Assuming that the MV problem has a solution (X ∗1 , ...X
∗
d ) then

there are two cases:

• If there exists i0 such that ρgi0 (Z ∗i0) > ρgi (Z
∗
i ) for all i 6= i0

then the optimal solution is unique and is such that X ∗i0 = Z ∗i0
and X ∗i = 0 for all i 6= i0.

• Otherwise, define R := max ρgi (Z
∗
i ) let I = {i : ρgi (Z

∗
i ) = R}

then there is an infinite number of solutions such that for all
i /∈ I, X ∗i = 0 and for all i ∈ I, X ∗i = kiZ

∗
i where ki > 0 are

such that
∑

i∈I ki = 1 (so that the global budget constraint

holds
∑d

i=1E[ξTX
∗
i ] = ω0).
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GNum approach

General case:

sup
(xi1,xi2,...,xi(d−1),zi)i=1,...,n

∈A′

1

n

n∑
i=1

V

(
xi1, xi2, . . . , xi(d−1),

i∑
`=1

z` −
d−1∑
k=1

xik

)
,

where the admissible set A′ is given by

A′ =
{(

xi1, xi2, . . . , xi(d−1), zi
)
∈ (R+)d , | ∑n

i=1 ζizi = w0

}
and ζi = 1

n

∑n
k=i ξk , for i = 1, . . . , n, where ξ1 > ξ2 > ... > ξn.

Start with very small value for n, e.g. n = 5.

We are looking for (xi1, xi2) for i = 1, ..., n. Define si = xi1 + xi2
and ~Z such that si =

∑i
`=1 zi to ensure multivariate cost-efficiency:

sup
(xi1,zi )i=1,...,n∈A′

RVaRα1,β1(~X1) + RVaRα2,β2(~S − ~X1).
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Conclusions, Current & Future Work

I Natural extension of cost-efficiency to a multivariate setting

I Solving a MV portfolio amounts to solve a MV risk sharing
problem and search for a one-dimensional quantile.

I Explicit multivariate portfolio for the supconvolution of
Distorted expectations, including RVaR as a special case

I An extension to cost-efficiency under ambiguity. Project with
Gero Junike, Thibaut Lux and Steven Vanduffel forthcoming
in Finance and Stochastics.

I An extension to cost-efficiency in incomplete markets.
Project with Stephan Sturm.

Do not hesitate to contact me to get updated working papers!
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Thank you for listening !
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