Multivariate Portfolio Choice via Quantiles

Carole Bernard

joint work with
Andrea Perchiazzo and Steven Vanduffel

Bachelier Finance Society One World Seminar
February 22nd, 2024
Outline of the Talk

1. Optimal Financial Decision Making
 - Role of cost-efficiency
 - Quantile Approach
 - Towards a generalisation to the multivariate case...

2. Optimal Multivariate Financial Decision Making
 - “Multivariate” cost-efficiency - Characterization of optimum
 - Reduction to a one-dimensional problem
 - Numerical approximation

3. Multivariate Risk Sharing via Quantile Approach
 - Theoretical elements
 - Example with a bivariate expected utility
 - Example with a multivariate Yaari investor
Cost-efficiency

- A portfolio/cash-flow/consumption with final payoff X_T (consumption only at time T).
- A complete market
- Initial cost of X_T is given by $x_0 = c(X_T) = \mathbb{E}[\xi T X_T]$.

A strategy X^*_T (or a payoff) with cdf F is cost-efficient if any other strategy that generates the same distribution F at the time horizon T costs at least as much, i.e., if it solves

$$\min \{X_T \mid X_T \sim F\} \mathbb{E}[\xi T X_T]$$
Explicit Representation of Cost-efficient Payoffs

Theorem

Consider the cost-efficiency problem:

\[
\min_{\{X_T \mid X_T \sim F\}} \mathbb{E}[\xi_T X_T]
\]

Assume \(\xi_T\) is continuously distributed, then the optimal strategy is

\[
X_T^\star = F^{-1} (1 - F_{\xi}(\xi_T)).
\]

Note that \(X_T^\star \sim F\) and \(X_T^\star\) is a.s. unique solution.

Intuition of the proof: \[
\frac{\mathbb{E}[\xi_T X_T] - \mathbb{E}[\xi_T] \mu_F}{\text{std}(\xi_T) \sigma_F} = \text{corr}(\xi_T, X_T)
\]
Cost-efficiency & Portfolio Choice (General preferences)

\(V(\cdot) \) denotes the objective function of the agent to maximize (Expected utility, Value-at-Risk, Cumulative Prospect Theory...).

\[
\max_{X_T \mid \mathbb{E}[\xi_X X_T] = \omega_0} V(X_T).
\] (1)

Preferences \(V(\cdot) \) are assumed to be

- **non-decreasing**: \(X_T \geq Y_T \ \text{a.s.} \Rightarrow V(X_T) \geq V(Y_T) \)
- **law-invariant**: \(X_T =_d Y_T \Rightarrow V(X_T) = V(Y_T) \)

Equivalently, \(V(\cdot) \) respects **First-order stochastic dominance**

Theorem: Optimal strategies are cost-efficient

If an optimum \(X_T^* \) of (1) exists, let \(F \) be its cdf. Then, \(X_T^* \) is the cheapest way (cost-efficient) to achieve \(F \) at \(T \), i.e.

\[
X_T^* = F^{-1}(1 - F_\xi(\xi_T)) \text{ where } F_\xi \text{ is the cdf of } \xi_T.
\]
Optimal Portfolio via Quantiles

Let $V(\cdot)$ be non decreasing and law invariant, then if there exists a solution to

$$\max_{X_T} \quad V(X_T),$$

then Problem (2) boils down to searching a quantile

$$\sup_{F^{-1} \mid \mathbb{E}[\xi_T F^{-1}(1-F_{\xi_T}(\xi_T))] = \omega_0} V(F^{-1}(1-F_{\xi_T}(\xi_T))).$$

See e.g., He and Zhou: Optimal portfolio via quantiles, Ma.Fi. 2011, among many other authors who used quantiles to solve portfolio selection problems: Dybvig (1988), Föllmer and Schied (2004), Carlier and Dana (2006), Jin and Zhou (2008) and many more after 2011...
Multivariate Risk Sharing (without a market)

Define for each variable S,

$$A_d(S) := \left\{ \mathbf{x} : \sum_{i=1}^{d} X_i = S \right\}$$

Assume that we know how to solve

$$\sup_{\mathbf{x} \in A_d(S)} V(X_1, \ldots, X_d). \tag{3}$$

Denote by

$$(Y_1(S), \ldots, Y_d(S))$$

the optimal solution to (3).
Multivariate Risk Sharing (without a market)
Some examples in the literature

- Borch (1962) when \(V(X_1, \ldots, X_d) = \sum_{i=1}^{d} \mathbb{E}[U_i(X_i)] \).
- Inf convolution of convex risk measures Barieu and El Karoui (2005); for law invariant monetary utility by Jouini, Schachermayer and Touzi (2008).
- ...
Towards a Generalization to the Multivariate Case
(Bernard, De Gennaro, Vanduffel EJOR 2023)

Proposition

Consider an investor with law invariant preferences and who is maximizing her objective function \(V(X_1, \ldots, X_d) \) with a given initial budget \(w_0 \), i.e., \(E\left[\xi_T \sum_{i=1}^{d} X_i\right] = w_0 \). Also, assume that \(V(\cdot) \) is strictly increasing in at least one of the \(d \) components. Then the optimal investment for this investor, when it exists, is multivariate cost-efficient, i.e., it solves

\[
\min_{(X_1, \ldots, X_d) \sim G} E\left[\xi_T \sum_{i=1}^{d} X_i\right],
\]

for some joint distribution \(G \).

(all \(X_i, i = 1, \ldots, d \), share same investment horizon \(T \), so we omit it)
Sufficient Condition for Multivariate Cost-efficiency

Proposition

A (multidimensional) payoff is multivariate cost-efficient if

\[\text{cov}(X_1 + X_2 + \ldots + X_d, \xi_T) \] (4)

is minimum.

This allows us to build a numerical approximation for the optimal solution of a multivariate cost-efficiency problem.
Quantile Formulation of the Multivariate Portfolio Choice

From **multivariate cost-efficiency**, if a portfolio $X_1^*, X_2^*, .., X_d^*$ is a solution to

$$\sup_{E[\xi^T \sum_i X_i] = \omega_0} V(X_1, ..., X_d)$$

then $\sum X_i^* = F_S^{-1}(1 - F_{\xi^T}(\xi_T))$ where F_S is the cdf of $\sum X_i^*$.
Quantile Formulation of the Multivariate Portfolio Choice

From **multivariate cost-efficiency**, if a portfolio \(X_1^*, X_2^*, \ldots, X_d^* \) is a solution to

\[
\sup_{\mathbb{E}[\xi_T \sum_i X_i] = \omega_0} V(X_1, \ldots, X_d)
\]

then \(\sum X_i^* = F_S^{-1}(1 - F_{\xi_T}(\xi_T)) \) where \(F_S \) is the cdf of \(\sum X_i^* \).

The optimal portfolio then solves

\[
\sup_{F_S^{-1}} \quad \text{s.t.} \quad \mathbb{E}[\xi_T F_S^{-1}(U_T)] = \omega_0
\]

\[
V \left(Y_1(F_S^{-1}(U_T)), \ldots, Y_d(F_S^{-1}(U_T)) \right)
\]

where \(U_T = 1 - F_{\xi_T}(\xi_T) \).
Numerical approach to solve for F^{-1}_S

- **Step 1:** Discretize the problem: ξ_T takes n values

 $\xi_1 > \xi_2 > \ldots > \xi_n$

 $\xi_k := F^{-1}_{\xi_T} \left(\frac{n + 1 - k - 0.5}{n} \right)$, for $k = 1, 2, \ldots, n$.

- **Step 2:** Formalize the optimization within a discrete setting. The goal is to solve for (s_1, s_2, \ldots, s_n).

\[
\max_{(s_1, s_2, \ldots, s_n) \in \mathcal{A}} \tilde{V}(s_1, s_2, \ldots, s_n),
\]

(5a)

in which $s_i := F^{-1}_S \left(\frac{i}{n+1} \right)$ and the admissible set \mathcal{A} is

\[
\mathcal{A} = \left\{ (s_1, s_2, \ldots, s_n) \in \mathbb{R}^n \mid \sum_{j=1}^{n} \frac{1}{n} [\xi_j s_j] = \omega_0 \ (\text{budget}) \right\}.
\]
Numerical approach of the portfolio choice via quantiles

- **Step 3:** Translate the fact that for the optimal solution S and ξ_T are anti-monotonic. To do so,

$$\xi_1 > \xi_2 > \ldots > \xi_n \hspace{1cm} \text{and} \hspace{1cm} s_1 \leq s_2 \leq \ldots \leq s_n$$

s_i is an increasing sequence over the states translates in

$$s_1 = z_1 \leq s_2 = z_1 + z_2 \leq \ldots \leq z_1 + z_2 + \ldots + z_n = s_n$$

where the increasing constraint becomes simply $z_i \geq 0$

$$\max_{(z_1, z_2, \ldots, z_n) \in \tilde{A}} \tilde{V} (z_1, z_2, \ldots, z_n), \quad (6a)$$

$$\tilde{A} = \left\{ (z_1, z_2, \ldots, z_n) \in \mathbb{R}_+^n \mid \sum_{i=1}^n \xi_i z_i = \omega_0 \hspace{1cm} \text{(budget constraint)} \right\}.$$

\Rightarrow Solving the above optimization requires using a solver for n dimensions.
Convergence and accuracy of the algorithm

- Need a large n... impossible to solve without a good starting guess!
- Trick: Start with very small n and then use this solution as the starting value for the next step with $2n$ discretizations.

Figure: Diagram of the algorithm
Two Examples of Explicit Multivariate Portfolios

1. **Expected multivariate utility**: a sum of expected utility
2. **Multivariate Yaari dual theory of choice**: a sum of distorted expectations

Both problems can be solved explicitly and allow us to check that our numerical approach provides accurate solutions.
Example in a Bivariante Expected Utility (theory)

Define U_{a_1}, U_{a_2} are univariate exponential utility functions as

$$U_{a_i}(x) = -e^{-a_i x}, \quad i = 1, 2$$

and $a_1, a_2, \nu_1, \nu_2 > 0$.

Proposition: The optimal solutions X_1^* and X_2^* to the problem

$$\max_{(X_1, X_2) \in A} \mathbb{E} \left[\nu_1 U_{a_1}(X_1) + \nu_2 U_{a_2}(X_2) \right], \quad (7)$$

with $A := \{(X_1, X_2) : \mathbb{E} [\xi_T (X_1 + X_2)] = w_0\}$ are given by

$$\begin{pmatrix} X_1^* \\ X_2^* \end{pmatrix} = \begin{pmatrix} w_0 \lambda^* e^{rT} - \frac{1}{a_1} \left(rT - \frac{\theta^2 T}{2} \right) - \frac{\ln(\xi_T)}{a_1} \\ w_0 (1 - \lambda^*) e^{rT} - \frac{1}{a_2} \left(rT - \frac{\theta^2 T}{2} \right) - \frac{\ln(\xi_T)}{a_2} \end{pmatrix}, \quad (8)$$

with $\lambda^* = \frac{\ln(\frac{\nu_1 a_1}{\nu_2 a_2}) + a_2 w_0 e^{rT}}{(a_1 + a_2) w_0 e^{rT}}$.
Example in a Bivariate Expected Utility (numerical)

For any variable S, define $A_2(S) := \{\mathbf{X} : X_1 + X_2 = S\}$

$$\sup_{\mathbf{X} \in A_2(S)} -v_1 e^{-a_1 X_1} - v_2 e^{-a_2 X_2}$$

(9)

- The optimal bivariate risk sharing rule without a market (solving (9) for any S)

$$X_1 = Y_1(S) = a + bS \quad \text{and} \quad X_2 = Y_2(S) = -a + (1 - b)S$$

- Numerical solver to approximate the distribution of S. Trick: do a very rough discretization with say $n = 10$, and then solve, and then multiply by 2 the number of discretization points using the previous solution as initial condition... etc
Example in a Bivariate Expected Utility

\[a_1 = 0.8, \ a_2 = 0.2, \ v_1 = 0.3, \ v_2 = 0.7 \]
Illustration of the convergence
\[a_1 = 0.8 \ , \ a_2 = 0.2 \ , \ v_1 = 0.3 \ , \ v_2 = 0.7 \]

RAE: relative absolute error (RAE) for the objective function between the solution obtained numerically and the explicit solution.
Another example: Yaari Dual Theory of Choice

An agent with payoff X_T maximizes the distorted expectation (Yaari utility). So the 1-d portfolio choice problem writes

$$\sup_{F_{X_T}^{-1}} \text{s.t. } \mathbb{E}\left[\xi_T F_{X_T}^{-1}(1-F_{\xi_T}(\xi_T))\right] = w_0 \int_0^1 h(u) F_{X_T}^{-1}(u) \, du, \quad (10)$$

in which h is the weighting function; $h(u) := g'(1-u)$ where g is the distortion function.
An example of distorted expectation: RVaR

Let \((\alpha, \beta) \in [0, 1]^2\) be such that \(\alpha \leq \beta\). The **Range Value-at-Risk** (RVaR) is then defined as

\[
\text{RVaR}_{\alpha, \beta}(X) = \begin{cases}
\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \text{VaR}_u(X) \, du & \text{if } \beta > \alpha \\
\text{VaR}_\alpha(X) & \text{if } \beta = \alpha.
\end{cases}
\]

(Cont, Deguest, Scandolo (2010)).
An example of distorted expectation: RVaR

Let \((\alpha, \beta) \in [0, 1]^2\) be such that \(\alpha \leq \beta\). The Range Value-at-Risk (RVaR) is then defined as

\[
\text{RVaR}_{\alpha, \beta}(X) = \begin{cases}
\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \text{VaR}_u(X) \, du & \text{if } \beta > \alpha \\
\text{VaR}_\alpha(X) & \text{if } \beta = \alpha.
\end{cases}
\]

(Cont, Deguest, Scandolo (2010)).

In the RVaR context,

\[
g(u) = \min \left\{ \max \left\{ \frac{u + \beta - 1}{\beta - \alpha}, 0 \right\}, 1 \right\}
\quad \text{and} \quad
h(u) = \frac{1}{\beta - \alpha} 1_{(\alpha, \beta]}(u)
\]
Multivariate Yaari Dual Theory of Choice

We consider as objective a sum of distorted expectations (Yaari’s expectation).

\[V(X_1, X_2, \ldots, X_d) = \sum_{i=1}^{d} \rho_{g_i}(X_i) \]

where

\[\rho_{g_i}(X_i) = \int_{0}^{1} h_i(u) F_{X_i}^{-1}(u) \, du \]

in which \(h_i \) is the weighting function; \(h_i(u) := g_i'(1 - u) \) where \(g_i \) is the distortion function.
Example: Multivariate Portfolio Problem

The multivariate portfolio choice problem under study writes as

$$\sup_{(X_1, X_2, \ldots, X_d) \in A} \sum_{i=1}^{d} \rho g_i(X_i),$$

(11)

where the admissible set A is

$$A = \left\{ (X_1, X_2, \ldots, X_d) \text{ s.t. } X_i \geq 0, \ \mathbb{E} \left[\xi^T \sum_{i=1}^{d} X_i \right] = w_0 \right\},$$

and $w_0 > 0$ denotes the total budget that must be allocated in d dimensions.
Explicit solution for the Yaari investor \((d = 1)\)

The Yaari Ratio \(YR(c), \forall c > 0\), is defined as

\[YR(c) = \frac{g(p(c))}{q(c)}, \]

where \(p(c) = \mathbb{P}(\xi_T < c)\) and \(q(c) = \mathbb{E}[\xi_T 1_{\xi_T < c}] e^{rT} \).

Theorem: Boudt-Dragun-Vanduffel (2022) or He-Jiang (2021):

The **optimal solution** to the problem (10) is explicit.

1. \(X_T^* = w_0 e^{rT}\) when \(\sup_{c > 0} YR(c) \leq 1\);

2. otherwise, when \(\sup_{c > 0} YR(c) > 1\) and the supremum is attained, it is

\[X_T^* = \frac{w_0}{q(c^*)} e^{rT} 1_{\xi_T < c^*}, \quad c^* = \arg\max_{c > 0} YR(c). \]
Explicit solution \((d = 2)\)

An example with the following parameters:

- For payoff \(X_1\): \(\alpha_1 = 0.65\), \(\beta_1 = 0.75\), and \(\text{max YR} = 3.58\) with \(c^* = 0.89\);
- For payoff \(X_2\): \(\alpha_2 = 0.6\), \(\beta_2 = 0.9\), and \(\text{max YR} = 3.07\) with \(c^* = 0.92\).

For each unit of budget invested, \(X_1\) is always better than \(X_2\).
Explicit solution (Example with sum of $d = 2$ RVaRs)

$$\sup_{(X_1, X_2) \in A} \text{RVaR}_{\alpha_1, \beta_1}(X_1) + \text{RVaR}_{\alpha_2, \beta_2}(X_2),$$

where $A = \{(X_1, X_2) \in \mathcal{X}_+^d \text{ s.t. } \mathbb{E}[\xi_T(X_1 + X_2)] = w_0\}$.

- Extreme risk sharing: concentration of payoff in one participant;
- No benefit of investing in payoff X_2.
- Digital option for X_1^*;
- Nothing for X_2^*.

Carole Bernard
Proposition: Explicit MV portfolio with sum of Yaari utilities

Let Z_i^* be the solution to

$$\sup_{Z \in \mathcal{X}_+ / \mathbb{E}[\xi^T Z] = \omega_0} \rho_{g_i}(Z).$$

Assuming that the MV problem has a solution $(X_1^*, ... X_d^*)$ then there are two cases:

- If there exists i_0 such that $\rho_{g_{i_0}}(Z_{i_0}^*) > \rho_{g_i}(Z_i^*)$ for all $i \neq i_0$ then the optimal solution is unique and is such that $X_{i_0}^* = Z_{i_0}^*$ and $X_i^* = 0$ for all $i \neq i_0$.

- Otherwise, define $R := \max \rho_{g_i}(Z_i^*)$ let $\mathcal{I} = \{i : \rho_{g_i}(Z_i^*) = R\}$ then there is an infinite number of solutions such that for all $i \not\in \mathcal{I}$, $X_i^* = 0$ and for all $i \in \mathcal{I}$, $X_i^* = k_i Z_i^*$ where $k_i \geq 0$ are such that $\sum_{i \in \mathcal{I}} k_i = 1$ (so that the global budget constraint holds $\sum_{i=1}^d \mathbb{E}[\xi^T X_i^*] = \omega_0$).
GNum approach

General case:

\[
\sup_{(x_{i1}, x_{i2}, \ldots, x_{i(d-1)}, z_i) \in A'} \frac{1}{n} \sum_{i=1}^{n} V \left(x_{i1}, x_{i2}, \ldots, x_{i(d-1)}, \sum_{\ell=1}^{i} z_\ell - \sum_{k=1}^{d-1} x_{ik} \right)
\]

where the admissible set \(A' \) is given by

\[
A' = \left\{ (x_{i1}, x_{i2}, \ldots, x_{i(d-1)}, z_i) \in (\mathbb{R}_+)^d, \mid \sum_{i=1}^{n} \zeta_i z_i = w_0 \right\}
\]

and \(\zeta_i = \frac{1}{n} \sum_{k=i}^{n} \xi_k \), for \(i = 1, \ldots, n \), where \(\xi_1 > \xi_2 > \ldots > \xi_n \).

Start with very small value for \(n \), e.g. \(n = 5 \).
GNum approach

General case:

\[
\sup_{(x_{i1}, x_{i2}, \ldots, x_{i(d-1)}, z_i) \in \mathcal{A}'} \frac{1}{n} \sum_{i=1}^{n} V \left(x_{i1}, x_{i2}, \ldots, x_{i(d-1)}, \sum_{\ell=1}^{i} z_\ell - \sum_{k=1}^{d-1} x_{ik} \right)
\]

where the admissible set \(\mathcal{A}' \) is given by

\[
\mathcal{A}' = \left\{ (x_{i1}, x_{i2}, \ldots, x_{i(d-1)}, z_i) \in (\mathbb{R}_+)^d \mid \sum_{i=1}^{n} \zeta_i z_i = w_0 \right\}
\]

and \(\zeta_i = \frac{1}{n} \sum_{k=i}^{n} \xi_k \), for \(i = 1, \ldots, n \), where \(\xi_1 > \xi_2 > \ldots > \xi_n \).

Start with very small value for \(n \), e.g. \(n = 5 \).

We are looking for \((x_{i1}, x_{i2})\) for \(i = 1, \ldots, n \). Define \(s_i = x_{i1} + x_{i2} \) and \(\tilde{Z} \) such that \(s_i = \sum_{\ell=1}^{i} z_i \) to ensure multivariate cost-efficiency:

\[
\sup_{(x_{i1}, z_i) \in \mathcal{A}'} \text{RVaR}_{\alpha_1, \beta_1}(\tilde{X}_1) + \text{RVaR}_{\alpha_2, \beta_2}(\tilde{S} - \tilde{X}_1).
\]
Figure 3.21: Optimal portfolios in the case of a sum of two RVaR using GNum approach. Input parameters: $\alpha_1 = 0.65$, $\beta_1 = 0.75$, $\alpha_2 = 0.6$, $\beta_2 = 0.9$, $\mu = 0.05$, $r = 0.01$, $\sigma = 0.2$, $T = 1$, and $n_5 = 640$.
Conclusions, Current & Future Work

► Natural extension of cost-efficiency to a multivariate setting
► Solving a MV portfolio amounts to solve a MV risk sharing problem and search for a one-dimensional quantile.
► Explicit multivariate portfolio for the supconvolution of Distorted expectations, including RVaR as a special case
► An extension to cost-efficiency in incomplete markets. Project with Stephan Sturm.

Do not hesitate to contact me to get updated working papers!
Thank you for listening!