Non-asymptotic perspectives on mean field approximations and stochastic control

OR: How to do mean field control without mean field limits

Daniel Lacker

Industrial Engineering and Operations Research, Columbia University

March 21, 2024

"Mean field approximations via log-concavity," joint with:

Sumit Mukherjee (Columbia)

Lane Chun Yeung (CMU)

"Approximately optimal distributed stochastic controls beyond the mean field setting," joint with:

Joe Jackson (U Chicago)

High-dimensional stochastic control, toy model

Players i = 1, ..., n have state processes $\boldsymbol{X} = (X^1, ..., X^n)$,

$$dX_t^i = \alpha_i(t, \mathbf{X}_t)dt + dW_t^i$$
, valued in \mathbb{R}^d .

 $\alpha = (\alpha_1, \ldots, \alpha_n) =$ Markovian, full-information controls.

High-dimensional stochastic control, toy model

Players i = 1, ..., n have state processes $\boldsymbol{X} = (X^1, ..., X^n)$,

$$dX_t^i = \alpha_i(t, \mathbf{X}_t)dt + dW_t^i$$
, valued in \mathbb{R}^d .

 $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n) = Markovian, full-information controls.$

Collectively optimize:

$$V := \inf_{\alpha} J(\alpha) = \inf_{\alpha} \mathbb{E} \left[\frac{G(\boldsymbol{X}_{T})}{2n} + \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{T} |\alpha_{i}(t, \boldsymbol{X}_{t})|^{2} dt \right]$$

Here $G: (\mathbb{R}^d)^n \to \mathbb{R}$ is arbitrary, say bounded from below.

"Mean field control" case: G takes the form

$$G(\mathbf{x}) = \mathcal{G}(m_{\mathbf{x}}^n), \qquad m_{\mathbf{x}}^n := rac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}, \qquad \mathcal{G}: \mathcal{P}(\mathbb{R}^d) o \mathbb{R}.$$

"Mean field control" case: G takes the form

$$G(\mathbf{x}) = \mathcal{G}(m_{\mathbf{x}}^n), \qquad m_{\mathbf{x}}^n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}, \qquad \mathcal{G} : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}.$$

Mean field limit as $n \to \infty$,

$$V \rightarrow \overline{V} := \inf_{\overline{\alpha}} \mathcal{G}(\operatorname{Law}(\overline{X}_{T})) + \frac{1}{2} \mathbb{E} \int_{0}^{T} |\overline{\alpha}(t, \overline{X}_{t})|^{2} dt,$$
$$d\overline{X}_{t} = \overline{\alpha}(t, \overline{X}_{t}) dt + d\overline{W}_{t}, \text{ valued in } \mathbb{R}^{d}.$$

"Mean field control" case: G takes the form

$$G(\mathbf{x}) = \mathcal{G}(m_{\mathbf{x}}^n), \qquad m_{\mathbf{x}}^n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}, \qquad \mathcal{G} : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}.$$

Mean field limit as $n \to \infty$,

$$V \rightarrow \overline{V} := \inf_{\overline{\alpha}} \mathcal{G}(\operatorname{Law}(\overline{X}_{T})) + \frac{1}{2} \mathbb{E} \int_{0}^{T} |\overline{\alpha}(t, \overline{X}_{t})|^{2} dt,$$
$$d\overline{X}_{t} = \overline{\alpha}(t, \overline{X}_{t}) dt + d\overline{W}_{t}, \text{ valued in } \mathbb{R}^{d}.$$

Approximate optimizers for V: $\alpha_i(t, \mathbf{x}) = \overline{\alpha}_*(t, x_i)$, where $\overline{\alpha}_*$ optimal for \overline{V}

"Mean field control" case: G takes the form

$$G(\mathbf{x}) = \mathcal{G}(m_{\mathbf{x}}^n), \qquad m_{\mathbf{x}}^n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}, \qquad \mathcal{G} : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}.$$

Mean field limit as $n \to \infty$,

$$V \rightarrow \overline{V} := \inf_{\overline{\alpha}} \mathcal{G}(\operatorname{Law}(\overline{X}_{T})) + \frac{1}{2} \mathbb{E} \int_{0}^{T} |\overline{\alpha}(t, \overline{X}_{t})|^{2} dt,$$
$$d\overline{X}_{t} = \overline{\alpha}(t, \overline{X}_{t}) dt + d\overline{W}_{t}, \text{ valued in } \mathbb{R}^{d}.$$

Approximate optimizers for V: $\alpha_i(t, \mathbf{x}) = \overline{\alpha}_*(t, x_i)$, where $\overline{\alpha}_*$ optimal for \overline{V}

These approximate optimizers are distributed! (or decentralized)

For general $G : (\mathbb{R}^d)^n \to \mathbb{R}$, no mean field limit available. What can be done?

For general $G : (\mathbb{R}^d)^n \to \mathbb{R}$, no mean field limit available. What can be done?

Guiding example: Heterogeneous interactions,

$$G(\mathbf{x}) = rac{1}{n}\sum_{i=1}^{n}G_i(\mathbf{x}), \quad G_i(\mathbf{x}) := U(x_i) + rac{1}{2}\sum_{j\neq i}J_{ij}K(x_i - x_j),$$

where $J \in \mathbb{R}^{n \times n}$, and K is an even function.

For general $G : (\mathbb{R}^d)^n \to \mathbb{R}$, no mean field limit available. What can be done?

Guiding example: Heterogeneous interactions,

$$G(\mathbf{x}) = rac{1}{n}\sum_{i=1}^{n}G_i(\mathbf{x}), \quad G_i(\mathbf{x}) := U(x_i) + rac{1}{2}\sum_{j\neq i}J_{ij}K(x_i - x_j),$$

where $J \in \mathbb{R}^{n \times n}$, and K is an even function. Alternatively:

$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \leq i < j \leq n} J_{ij} K(x_i - x_j)$$

Ex A: Usual case is $J_{ij} = 1/n$ **Ex B:** J = scaled adjacency matrix of a graph, $J_{ij} = (1/d_i)1_{i \sim j}$

For general $G : (\mathbb{R}^d)^n \to \mathbb{R}$, no mean field limit available. What can be done?

Guiding example: Heterogeneous interactions,

$$G(\mathbf{x}) = rac{1}{n}\sum_{i=1}^{n}G_i(\mathbf{x}), \quad G_i(\mathbf{x}) := U(x_i) + rac{1}{2}\sum_{j\neq i}J_{ij}K(x_i - x_j),$$

where $J \in \mathbb{R}^{n \times n}$, and K is an even function. Alternatively:

$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \leq i < j \leq n} J_{ij} K(x_i - x_j)$$

Ex A: Usual case is $J_{ij} = 1/n$ **Ex B:** J = scaled adjacency matrix of a graph, $J_{ij} = (1/d_i)1_{i \sim j}$

Related: recent work on graphon limits of particle systems/games

The distributed optimal control problem

Recall:

$$V = \inf_{\alpha} J(\alpha) = \inf_{\alpha} \mathbb{E} \left[G(\boldsymbol{X}_{T}) + \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{T} |\alpha_{i}(t, \boldsymbol{X}_{t}))|^{2} dt \right]$$

Distributed control problem, definition:

$$V_{\rm dstr} = \inf_{\alpha \ \rm dstr} J(\alpha)$$

where inf is over controls of the form $\alpha_i(t, \mathbf{X}_t) = \tilde{\alpha}_i(t, X_t^i)$.

The distributed optimal control problem

Recall:

$$V = \inf_{\alpha} J(\alpha) = \inf_{\alpha} \mathbb{E} \left[G(\boldsymbol{X}_{T}) + \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{T} |\alpha_{i}(t, \boldsymbol{X}_{t}))|^{2} dt \right]$$

Distributed control problem, definition:

$$V_{\rm dstr} = \inf_{\boldsymbol{\alpha} \, {
m dstr}} J(\alpha)$$

where inf is over controls of the form $\alpha_i(t, \mathbf{X}_t) = \tilde{\alpha}_i(t, \mathbf{X}_t^i)$.

Questions:

- When are V and V_{dstr} close?
- How do we construct a (near-)optimal distributed control?
- General theory for distributed control problems?

Related litearture

Related perspectives:

- Seguret-Alasseur-Bonnans-De Paola-Oudjane-Trovato '23
- Stochastic teams and information structures. Yüksel, Saldi, Basar...

Related litearture

Related perspectives:

- Seguret-Alasseur-Bonnans-De Paola-Oudjane-Trovato '23
- Stochastic teams and information structures. Yüksel, Saldi, Basar...

Warning: There are different meanings of the term "distributed" in the control literature.

First sentence of a 1973 survey by J.L. Lions defines "distributed systems" as "systems for which the state can be described by a solution of a partial differential equation" ...

Usage in this talk is common in mean field game literature, at least.

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Ex 1:
$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U_i(x_i) \rightsquigarrow \mathsf{RHS} = \mathbf{0}$$

Intuition: RHS measures "how close" the function *G* is to being additively separable

Side note on deterministic controls

A related result to help with intuition:

Define V_{det} like V_{dstr} but with the further restriction that controls are deterministic, i.e., solely time-dependent: $\alpha_i(t, \mathbf{x}) = \tilde{\alpha}_i(t)$.

Side note on deterministic controls

A related result to help with intuition:

Define V_{det} like V_{dstr} but with the further restriction that controls are deterministic, i.e., solely time-dependent: $\alpha_i(t, \mathbf{x}) = \tilde{\alpha}_i(t)$.

Proposition (L.-Mukherjee-Yeung '22) Under same assumptions:

$$0 \le V_{\text{det}} - V \le \frac{1}{2}nT^2 \sum_{i=1}^{n} \sum_{j=1}^{n} \|\partial_{ij}G\|_{\infty}^2 =: RHS_2$$

Summation now includes diagonal terms i = j !

Side note on deterministic controls

A related result to help with intuition:

Define V_{det} like V_{dstr} but with the further restriction that controls are deterministic, i.e., solely time-dependent: $\alpha_i(t, \mathbf{x}) = \tilde{\alpha}_i(t)$.

Proposition (L.-Mukherjee-Yeung '22) Under same assumptions:

$$0 \le V_{\text{det}} - V \le \frac{1}{2}nT^2 \sum_{i=1}^n \sum_{j=1}^n \|\partial_{ij}G\|_{\infty}^2 =: RHS_2$$

Summation now includes diagonal terms i = j !

Intuition: RHS_2 measures "how close" G is to being affine

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Ex 2, symmetric case:

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Ex 2, symmetric case: Let $G(\mathbf{x}) = F(\frac{1}{n}\sum_{i=1}^{n} f(x_i))$,

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \le V_{\rm dstr} - V \le nT^2 \sum_{1 \le i < j \le n} \|\partial_{ij}G\|_{\infty}^2 =: RHS$$

Heterogeneous interactions: U, K convex, K even, $J_{ij} \ge 0$,

$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \le i < j \le n} J_{ij} K(x_i - x_j)$$

$$\rightsquigarrow \|\partial_{ij}G\|_{\infty} = \frac{1}{n} J_{ij} \|K''\|_{\infty}$$

$$\rightsquigarrow \text{RHS} \le \frac{T^2}{2n} \|K''\|_{\infty}^2 \text{tr}(J^2)$$

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Heterogeneous interactions: U, K convex, K even, $J_{ij} \ge 0$,

$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \le i < j \le n} J_{ij} K(x_i - x_j)$$

$$\rightsquigarrow \text{RHS} \le \frac{T^2}{2n} \|K''\|_{\infty}^2 \text{tr}(J^2)$$

Key condition: $tr(J^2) = o(n)$. (cf. Basak-Mukherjee '17)

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Heterogeneous interactions: U, K convex, K even, $J_{ij} \ge 0$,

$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \le i < j \le n} J_{ij} K(x_i - x_j)$$

$$\rightsquigarrow \text{RHS} \le \frac{T^2}{2n} \|K''\|_{\infty}^2 \text{tr}(J^2)$$

Ex: $J_{ij} = (1/d) \mathbb{1}_{i \sim j}$ in a *d*-regular graph $\rightsquigarrow \operatorname{tr}(J^2) = n/d$, so RHS $\rightarrow 0$ if $d \rightarrow \infty$

Theorem (L.-Mukherjee-Yeung '22) Let $G : (\mathbb{R}^d)^n \to \mathbb{R}$ be C^2 convex, $\|\nabla^2 G\|_{\infty} < \infty$. Then

$$0 \leq V_{\mathrm{dstr}} - V \leq nT^2 \sum_{1 \leq i < j \leq n} \|\partial_{ij}G\|_{\infty}^2 =: RHS.$$

Heterogeneous interactions: U, K convex, K even, $J_{ij} \ge 0$,

$$G(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} U(x_i) + \frac{1}{n} \sum_{1 \le i < j \le n} J_{ij} K(x_i - x_j)$$

$$\rightsquigarrow \text{RHS} \le \frac{T^2}{2n} \|K''\|_{\infty}^2 \text{tr}(J^2)$$

Interesting point: If J has row sums = 1, then $V_{dstr} = \overline{V} =$ mean field value. \rightsquigarrow Universality of the mean field!

Relative entropy: $H(\mu \mid \nu) = \int \log(d\mu/d\nu) d\mu$

Cole-Hopf/Girsanov solution: With $\gamma := N(0, TI)$:

$$V = \inf_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right) \stackrel{(*)}{=} -\frac{1}{n} \log \int_{\mathbb{R}^n} e^{-nG} \, d\gamma$$

Relative entropy: $H(\mu \mid \nu) = \int \log(d\mu/d\nu) d\mu$

Cole-Hopf/Girsanov solution: With $\gamma := N(0, TI)$:

$$V = \inf_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right) \stackrel{(*)}{=} -\frac{1}{n} \log \int_{\mathbb{R}^n} e^{-nG} \, d\gamma$$
$$V_{\text{dstr}} = \inf_{\mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right)$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n)$ = set of product measures $\mu_1 \otimes \cdots \otimes \mu_n$.

Relative entropy: $H(\mu \mid \nu) = \int \log(d\mu/d\nu) d\mu$

Cole-Hopf/Girsanov solution: With $\gamma := N(0, TI)$:

$$V = \inf_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right) \stackrel{(*)}{=} -\frac{1}{n} \log \int_{\mathbb{R}^n} e^{-nG} \, d\gamma$$
$$V_{\text{dstr}} = \inf_{\mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right)$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n)$ = set of product measures $\mu_1 \otimes \cdots \otimes \mu_n$.

Static formulation: Let $P(dx) \propto \exp(-nG(x))\gamma(dx)$. Then

$$n(V_{\rm dstr} - V) = \inf \{ H(\mu | P) : \mu \in \mathcal{P}_{\rm prod}(\mathbb{R}^n) \}.$$

Relative entropy: $H(\mu \mid \nu) = \int \log(d\mu/d\nu) d\mu$

Cole-Hopf/Girsanov solution: With $\gamma := N(0, TI)$:

$$V = \inf_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right) \stackrel{(*)}{=} -\frac{1}{n} \log \int_{\mathbb{R}^n} e^{-nG} \, d\gamma$$
$$V_{\text{dstr}} = \inf_{\mu \in \mathcal{P}_{\text{prod}}(\mathbb{R}^n)} \left(\int G \, d\mu + \frac{1}{n} H(\mu \mid \gamma) \right)$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n)$ = set of product measures $\mu_1 \otimes \cdots \otimes \mu_n$.

Static formulation: Let $P(dx) \propto \exp(-nG(x))\gamma(dx)$. Then

$$n(V_{\mathrm{dstr}} - V) = \inf \{ H(\mu \mid P) : \mu \in \mathcal{P}_{\mathrm{prod}}(\mathbb{R}^n) \}.$$

Philosophy: Distributed controls \iff independent X^{i} 's

$$\mathbb{E}[G(\boldsymbol{X}_{T})] = \int_{\mathbb{R}^n} G(\boldsymbol{x}) \prod_{i=1}^n \mu_i(dx_i), \qquad \mu_i = \operatorname{Law}(X_T^i)$$

Relative entropy: $H(\mu \,|\, \nu) = \int \log(d\mu/d\nu) \,d\mu$

Static formulation: Let $P(dx) \propto \exp(-nG(x))\gamma(dx)$. Then

$$\mathit{n}(\mathit{V}_{\mathrm{dstr}} - \mathit{V}) = \inf \left\{ \mathit{H}(\mu \,|\, \mathit{P}) : \mu \in \mathcal{P}_{\mathrm{prod}}(\mathbb{R}^{\mathit{n}})
ight\}$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n)$ = set of product measures $\mu_1 \otimes \cdots \otimes \mu_n$.

Related literature:

- nonlinear large deviations theory, Chatterjee-Dembo '16, also Basak-Mukherjee '17, Eldan '18, Austin '19, Augeri '20...
- mean field variational inference (Wainwright-Jordan '08, Blei et al '17)

Relative entropy: $H(\mu \,|\, \nu) = \int \log(d\mu/d\nu) \,d\mu$

Static formulation: Let $P(dx) \propto \exp(-nG(x))\gamma(dx)$. Then

$$\mathit{n}(\mathit{V}_{\mathrm{dstr}} - \mathit{V}) = \inf \left\{ \mathit{H}(\mu \,|\, \mathit{P}) : \mu \in \mathcal{P}_{\mathrm{prod}}(\mathbb{R}^{\mathit{n}})
ight\}$$

where $\mathcal{P}_{\text{prod}}(\mathbb{R}^n)$ = set of product measures $\mu_1 \otimes \cdots \otimes \mu_n$.

Related literature:

nonlinear large deviations theory, Chatterjee-Dembo '16, also Basak-Mukherjee '17, Eldan '18, Austin '19, Augeri '20...

mean field variational inference (Wainwright-Jordan '08, Blei et al '17)

Proof ingredients: first-order condition for μ , Log-Sobolev + Poincaré inequalities for log-concave measures

Toward more general cost functions

Question: Can we generalize beyond the quadratic running cost case, where no static formulation is available?

Toward more general cost functions

Question: Can we generalize beyond the quadratic running cost case, where no static formulation is available?

State process: $X = (X^1, \dots, X^n)$ as before,

 $dX_t^i = lpha_i(t, \boldsymbol{X}_t)dt + dW_t^i$, valued in \mathbb{R}^d .

Cost functional:

$$J(\boldsymbol{\alpha}) := \mathbb{E}\left[G(\boldsymbol{X}_{T}) + \int_{0}^{T} \left(\boldsymbol{F}(\boldsymbol{X}_{t}) + \frac{1}{n} \sum_{i=1}^{n} L^{i}(X_{t}^{i}, \alpha_{i}(t, \boldsymbol{X}_{t}))\right) dt\right].$$

Compare: full-information versus distributed values,

$$V := \inf_{\alpha} J(\alpha), \qquad V_{\mathrm{dstr}} := \inf_{\alpha \ \mathrm{dstr}} J(\alpha)$$

Toward more general cost functions

Assumptions:

- F, G, and L^i are convex, L^i uniformly in a
- ► (F, G, Lⁱ) & Hamiltonian Hⁱ(x, p) = sup_a(-a · p Lⁱ(x, a)) have bounded 2nd order derivatives
- Theorem (Jackson-L. '23)

$$V_{\mathrm{dstr}} - V \leq Cn \sum_{1 \leq i < j \leq n} \left(\|\partial_{ij}F\|_{\infty}^2 + \|\partial_{ij}G\|_{\infty}^2 \right),$$

where C depends only (and explicitly) on T and spectral bounds of Hessians of (F, G, L^i, H^i) .
The mean field case, and convexity

Suppose $L^i = L$ does not depend on *i*, and

$$F(\mathbf{x}) = \mathcal{F}(m_{\mathbf{x}}^n), \qquad G(\mathbf{x}) = \mathcal{G}(m_{\mathbf{x}}^n),$$

where $\mathcal{F}, \mathcal{G} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ are displacement convex with bounded 2nd order Wasserstein (Lions) derivatives. Then

$$|V - \overline{V}| \leq |V - V_{\mathrm{dstr}}| + |V_{\mathrm{dstr}} - \overline{V}| = O(1/n).$$

This is optimal! Though not surprising, was essentially folklore. (Germain-Pham-Warin '22)

The mean field case, and convexity

Suppose $L^i = L$ does not depend on *i*, and

$$F(\mathbf{x}) = \mathcal{F}(m_{\mathbf{x}}^n), \qquad G(\mathbf{x}) = \mathcal{G}(m_{\mathbf{x}}^n),$$

where $\mathcal{F}, \mathcal{G} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ are displacement convex with bounded 2nd order Wasserstein (Lions) derivatives. Then

$$|V - \overline{V}| \leq |V - V_{\text{dstr}}| + |V_{\text{dstr}} - \overline{V}| = O(1/n).$$

This is optimal! Though not surprising, was essentially folklore. (Germain-Pham-Warin '22)

Convexity is crucial! Non-convex case is extremely subtle. Cardaliaguet-Daudin-Jackson-Souganidis '22, Daudin-Delarue-Jackson '23, Cardaliaguet-Jackson-[Mimikos-Stamatopoulos]-Souganidis '23.

General theory of distributed control

Distributed control is not "classical" control!

But...

General theory of distributed control

Distributed control is not "classical" control!

But... it can be viewed as a sort of mean field control problem, with state variable $(\mathcal{L}(X_t^1), \ldots, \mathcal{L}(X_t^n)) \in (\mathcal{P}(\mathbb{R}^d))^n$.

General theory of distributed control

Distributed control is not "classical" control!

But... it can be viewed as a sort of mean field control problem, with state variable $(\mathcal{L}(X_t^1), \ldots, \mathcal{L}(X_t^n)) \in (\mathcal{P}(\mathbb{R}^d))^n$.

Philosophy: Distributed controls \iff independent X^{i} 's

$$\mathbb{E}[G(\boldsymbol{X}_{T})] = \int_{(\mathbb{R}^d)^n} G(\boldsymbol{x}) \prod_{i=1}^n \mu_T^i(dx_i), \quad \mu_t^i = \mathcal{L}(X_t^i)$$

General theory of distributed control Simpler case: $L^i(x, a) = |a|^2/2$ and $F \equiv 0$

Distributed value function $\mathcal{V}_d(t, \boldsymbol{m})$ on $[0, T] \times (\mathcal{P}(\mathbb{R}^d))^n$ formally satisfies a PDE:

$$\begin{split} &-\partial_t \mathcal{V}_d + \frac{1}{2} \sum_{i=1}^n \int_{\mathbb{R}^d} \left(n |D_{m^i} \mathcal{V}_d|^2 - \operatorname{Tr}(D_y D_{m^i} \mathcal{V}_d) \right) m^i(dy) = 0, \\ &\mathcal{V}_d(\mathcal{T}, \boldsymbol{m}) = \int G \, d(m^1 \otimes \cdots \otimes m^n), \end{split}$$

...with a corresponding verification theorem.

General theory of distributed control Simpler case: $L^i(x, a) = |a|^2/2$ and $F \equiv 0$

Distributed value function $\mathcal{V}_d(t, \boldsymbol{m})$ on $[0, T] \times (\mathcal{P}(\mathbb{R}^d))^n$ formally satisfies a PDE:

$$\begin{split} &-\partial_t \mathcal{V}_d + \frac{1}{2} \sum_{i=1}^n \int_{\mathbb{R}^d} \left(n |D_{m^i} \mathcal{V}_d|^2 - \operatorname{Tr}(D_y D_{m^i} \mathcal{V}_d) \right) m^i(dy) = 0, \\ &\mathcal{V}_d(\mathcal{T}, \boldsymbol{m}) = \int G \, d(m^1 \otimes \cdots \otimes m^n), \end{split}$$

...with a corresponding verification theorem.

Also, a stochastic maximum principle \rightsquigarrow FBSDE characterization of optimality:

$$dX_t^i = -nY_t^i dt + dW_t^i, \qquad X_0^i = x^i, dY_t^i = Z_t^i dW_t^i, \qquad Y_T^i = \mathbb{E}[G(\boldsymbol{X}_T) | X_T^i].$$

Lifting the full-info value function

Full-info (ordinary) value function $V : [0, T] \times (\mathbb{R}^d)^n \to \mathbb{R}$.

Lifting the full-info value function

Full-info (ordinary) value function $V : [0, T] \times (\mathbb{R}^d)^n \to \mathbb{R}$.

Lift: $\mathcal{V}:[0,T] imes (\mathcal{P}(\mathbb{R}^d))^n o \mathbb{R}$,

$$\mathcal{V}(t, \boldsymbol{m}) = \int_{(\mathbb{R}^d)^n} V(t, \boldsymbol{x}) \prod_{i=1}^n m^i (dx^i)$$

Lifting the full-info value function

Full-info (ordinary) value function $V : [0, T] \times (\mathbb{R}^d)^n \to \mathbb{R}$.

Lift: $\mathcal{V}:[0,T]\times(\mathcal{P}(\mathbb{R}^d))^n\to\mathbb{R}$,

$$\mathcal{V}(t, \boldsymbol{m}) = \int_{(\mathbb{R}^d)^n} V(t, \boldsymbol{x}) \prod_{i=1}^n m^i (dx^i)$$

...turns out to obey a PDE:

$$\begin{split} &-\partial_t \mathcal{V} + \frac{1}{2} \sum_{i=1}^n \int_{\mathbb{R}^d} \left(n |D_{m^i} \mathcal{V}|^2 - \operatorname{Tr}(D_y D_{m^i} \mathcal{V}) \right) m^i(dy) = - \mathcal{E}(t, \boldsymbol{m}), \\ &\mathcal{V}(T, \boldsymbol{m}) = \int G \, d(m^1 \otimes \cdots \otimes m^n). \end{split}$$

Same PDE as \mathcal{V}_d except *E* term! (to be defined)

Comparison principle \Longrightarrow

$$0 \leq \mathcal{V}_d(t, \boldsymbol{m}) - \mathcal{V}(t, \boldsymbol{m}) \leq \int_t^T E(s, \widehat{\boldsymbol{m}}_s) \, ds,$$

Comparison principle \Longrightarrow

$$0 \leq \mathcal{V}_d(t, \boldsymbol{m}) - \mathcal{V}(t, \boldsymbol{m}) \leq \int_t^T E(s, \widehat{\boldsymbol{m}}_s) \, ds,$$

where $(\widehat{\textbf{\textit{m}}}_{s})_{s \in [t,T]}$ is TBD

Comparison principle \Longrightarrow

$$0 \leq \mathcal{V}_d(t, \boldsymbol{m}) - \mathcal{V}(t, \boldsymbol{m}) \leq \int_t^T E(s, \widehat{\boldsymbol{m}}_s) \, ds,$$

where $(\widehat{\textbf{\textit{m}}}_{s})_{s \in [t,T]}$ is TBD

Def: For $m = (m^1, \ldots, m^n) \in (\mathcal{P}(\mathbb{R}^d))^n$ and $\boldsymbol{\xi} = (\xi^1, \ldots, \xi^n)$ with $\xi^i \sim m^i$ independent,

$$\boldsymbol{E}(t,\boldsymbol{m}) := \frac{n}{2} \sum_{i=1}^{n} \mathbb{E} \operatorname{Var}(D_i V(t,\boldsymbol{\xi}) | \xi_i).$$

Comparison principle \Longrightarrow

$$0 \leq \mathcal{V}_d(t, \boldsymbol{m}) - \mathcal{V}(t, \boldsymbol{m}) \leq \int_t^T E(s, \widehat{\boldsymbol{m}}_s) \, ds,$$

where $(\widehat{\textbf{\textit{m}}}_{s})_{s \in [t,T]}$ is TBD

Def: For $\boldsymbol{m} = (m^1, \dots, m^n) \in (\mathcal{P}(\mathbb{R}^d))^n$ and $\boldsymbol{\xi} = (\xi^1, \dots, \xi^n)$ with $\xi^i \sim m^i$ independent,

$$\boldsymbol{E}(t,\boldsymbol{m}) := \frac{n}{2} \sum_{i=1}^{n} \mathbb{E} \operatorname{Var}(D_i V(t,\boldsymbol{\xi}) | \xi_i).$$

Not obvious how to bound it! Uniform (in m) bounds don't work: $||D_iV||_{\infty} \leq ||D_iG||_{\infty} = O(1/n)$ at best (e.g., mean field case), gives only E = O(1).

The right idea: Just bound E along $(\widehat{m}_s)_{s \in [t,T]}$.

• Key calculation, where convexity of *V* is crucial:

$$\frac{d}{ds}E(s,\widehat{\boldsymbol{m}}_s)\geq 0.$$

The right idea: Just bound E along $(\widehat{m}_s)_{s \in [t,T]}$.

• Key calculation, where convexity of *V* is crucial:

$$\frac{d}{ds}E(s,\widehat{\boldsymbol{m}}_s)\geq 0.$$

Bound by time-T value:

$$E(s, \widehat{\boldsymbol{m}}_s) \leq E(T, \widehat{\boldsymbol{m}}_T) = \frac{n}{2} \sum_{i=1}^n \mathbb{E} \operatorname{Var}(D_i G(\widehat{\boldsymbol{X}}_T) | \widehat{X}_T^i).$$

The right idea: Just bound E along $(\widehat{m}_s)_{s \in [t,T]}$.

• Key calculation, where convexity of *V* is crucial:

$$\frac{d}{ds}E(s,\widehat{\boldsymbol{m}}_s)\geq 0.$$

Bound by time-T value:

$$E(s, \widehat{\boldsymbol{m}}_s) \leq E(T, \widehat{\boldsymbol{m}}_T) = \frac{n}{2} \sum_{i=1}^n \mathbb{E} \operatorname{Var}(D_i G(\widehat{\boldsymbol{X}}_T) | \widehat{X}_T^i).$$

Poincaré inequality:

$$\operatorname{Var}(D_i G(\widehat{\boldsymbol{X}}_T) | \widehat{X}_T^i) \leq (T - t) \sum_{j \neq i} \mathbb{E} \big[|D_{ij} G(\widehat{\boldsymbol{X}}_T)|^2 | \widehat{X}_T^i \big], \quad \forall i.$$

Combined:

$$egin{aligned} \mathcal{V}_d(t,oldsymbol{m}) &- \mathcal{V}(t,oldsymbol{m}) \leq \int_t^T E(s,oldsymbol{\widehat{m}}_s)\,ds \ &\leq (T-t)E(T,oldsymbol{\widehat{m}}_T) \ &\leq n(T-t)^2\sum_{1\leq i < j \leq n} \mathbb{E}|D_{ij}G(oldsymbol{\widehat{X}}_T)|^2 \end{aligned}$$

Note: Omitted constant factor \propto Poincaré constant of initial ${\it m}$

• Optimal controls α^i (full-info) and $\overline{\alpha}^i$ (distributed) are close:

$$\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{T}\mathbb{E}|\alpha_{t}^{i}-\overline{\alpha}_{t}^{i}|^{2}\,dt\leq\text{ [same bound]}$$

• Optimal controls α^i (full-info) and $\overline{\alpha}^i$ (distributed) are close:

$$\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{T}\mathbb{E}|\alpha_{t}^{i}-\overline{\alpha}_{t}^{i}|^{2} dt \leq \text{ [same bound]}$$

Proof idea: Look at associated FBSDEs (X, Y, Z) and $(\overline{X}, \overline{Y}, \overline{Z})$, compute $d(X_t - \overline{X}_t) \cdot (Y_t - \overline{Y}_t)$, and use convexity.

• Optimal controls α^i (full-info) and $\overline{\alpha}^i$ (distributed) are close:

$$\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{T}\mathbb{E}|\alpha_{t}^{i}-\overline{\alpha}_{t}^{i}|^{2} dt \leq \text{ [same bound]}$$

Proof idea: Look at associated FBSDEs (X, Y, Z) and $(\overline{X}, \overline{Y}, \overline{Z})$, compute $d(X_t - \overline{X}_t) \cdot (Y_t - \overline{Y}_t)$, and use convexity.

Most low-dimensional marginals are close:

$$\frac{1}{\binom{n}{k}} \sum_{S \subset [n], |S|=k} \mathcal{W}_2^2(\text{Law}(X^S), \text{Law}(\widehat{X}^S)) \le k \cdot [\text{same bound}]$$

• Optimal controls α^i (full-info) and $\overline{\alpha}^i$ (distributed) are close:

$$\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{T}\mathbb{E}|\alpha_{t}^{i}-\overline{\alpha}_{t}^{i}|^{2} dt \leq \text{ [same bound]}$$

Proof idea: Look at associated FBSDEs (X, Y, Z) and $(\overline{X}, \overline{Y}, \overline{Z})$, compute $d(X_t - \overline{X}_t) \cdot (Y_t - \overline{Y}_t)$, and use convexity.

Most low-dimensional marginals are close:

$$\frac{1}{\binom{n}{k}} \sum_{S \subset [n], |S| = k} \mathcal{W}_2^2(\text{Law}(X^S), \text{Law}(\widehat{X}^S)) \le k \cdot [\text{same bound}]$$

Implies (quantitative) concentration of empirical measure,

$$\frac{1}{n}\sum_{i=1}^{n}\delta_{X^{i}}\approx\frac{1}{n}\sum_{i=1}^{n}\operatorname{Law}(\widehat{X}^{i})$$

Recall: $V \leq V_{\rm dstr}$ trivially, because every distributed control is also a full-info control.

Recall: $V \leq V_{\rm dstr}$ trivially, because every distributed control is also a full-info control.

Key problem: Given a full-info control $\alpha(t, \mathbf{x})$, how to construct a "comparable" distributed control?

Recall: $V \leq V_{\rm dstr}$ trivially, because every distributed control is also a full-info control.

Key problem: Given a full-info control $\alpha(t, \mathbf{x})$, how to construct a "comparable" distributed control?

The independent projection will approximate a given state process $\mathbf{X} = (X^1, \dots, X^n)$ by another one $\mathbf{Y} = (Y^1, \dots, Y^n)$ in which components are independent, i.e., control is distributed.

Recall: $V \leq V_{\rm dstr}$ trivially, because every distributed control is also a full-info control.

Key problem: Given a full-info control $\alpha(t, \mathbf{x})$, how to construct a "comparable" distributed control?

The independent projection will approximate a given state process $\mathbf{X} = (X^1, \dots, X^n)$ by another one $\mathbf{Y} = (Y^1, \dots, Y^n)$ in which components are independent, i.e., control is distributed.

In comparison principle: $\widehat{\boldsymbol{m}}_{s} = (\operatorname{Law}(Y_{s}^{1}), \dots, \operatorname{Law}(Y_{s}^{n})).$

Given process
$$\boldsymbol{X}_t = (X_t^1, \dots, X_t^n)$$
:

$$dX_t^i = lpha_i(t, \boldsymbol{X}_t) \qquad dt + dW_t^i$$

Independent projection $\mathbf{Y}_t = (Y_t^1, \dots, Y_t^n)$:

$$dY_t^i = \mathbb{E}[\alpha_i(t, \mathbf{Y}_t) | Y_t^i] dt + dW_t^i$$

where $\mathbb{E}[\cdot | Y_t^i]$ is really integration w.r.t. law of $(Y_t^k)_{k \neq i}$. (Assume iid initialization, for simplicity.)

Given process
$$\boldsymbol{X}_t = (X_t^1, \dots, X_t^n)$$
:

$$dX_t^i = lpha_i(t, oldsymbol{X}_t) \qquad dt + dW_t^i$$

Independent projection $\mathbf{Y}_t = (Y_t^1, \dots, Y_t^n)$:

$$dY_t^i = \mathbb{E}[\alpha_i(t, \mathbf{Y}_t) | Y_t^i] dt + dW_t^i$$

where $\mathbb{E}[\cdot | Y_t^i]$ is really integration w.r.t. law of $(Y_t^k)_{k \neq i}$. (Assume iid initialization, for simplicity.)

Among all ways of approximating X by a process with independent components, this choice Y is natural in a few senses.

$$dX_t^i = \alpha_i(t, \boldsymbol{X}_t) \quad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\alpha_i(t, \boldsymbol{Y}_t) \mid \boldsymbol{Y}_t^i] \, dt + dW_t^i$$

Example: Mean field interacting particle systems.

$$\alpha_i(t, \mathbf{x}) = b_0(x_i) + \frac{1}{n-1} \sum_{k \neq i} b(x_i, x_k)$$

$$dX_t^i = \alpha_i(t, \boldsymbol{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\alpha_i(t, \boldsymbol{Y}_t) \mid \boldsymbol{Y}_t^i] dt + dW_t^i$$

Example: Mean field interacting particle systems.

$$\alpha_i(t, \boldsymbol{x}) = b_0(x_i) + \frac{1}{n-1} \sum_{k \neq i} b(x_i, x_k)$$

 $\implies Y^1, \dots, Y^n \text{ iid copies of McKean-Vlasov SDE,}$ $dY^i_t = \left(b_0(Y^i_t) + \int_{\mathbb{R}^d} b(Y^i_t, \cdot) d\mu_t\right) dt + dW^i_t, \ \mu_t = \text{Law}(Y^i_t),$

the well-known large-*n* limit in law of X^1

$$dX_t^i = \alpha_i(t, \boldsymbol{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\alpha_i(t, \boldsymbol{Y}_t) \mid \boldsymbol{Y}_t^i] dt + dW_t^i$$

Example: Non-exchangeable interacting particle systems, interaction matrix $J = (J_{ij})$.

$$\alpha_i(t, \mathbf{x}) = b_0(x_i) + \sum_{k \neq i} J_{ik} b(x_i, x_k)$$

$$dX_t^i = \alpha_i(t, \boldsymbol{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\alpha_i(t, \boldsymbol{Y}_t) \mid \boldsymbol{Y}_t^i] dt + dW_t^i$$

Example: Non-exchangeable interacting particle systems, interaction matrix $J = (J_{ij})$.

$$\alpha_i(t, \mathbf{x}) = b_0(x_i) + \sum_{k \neq i} J_{ik} b(x_i, x_k)$$

J row sums = 1 \implies Y^1, \ldots, Y^n iid copies of McKean-Vlasov SDE,

$$dY_t^i = \left(b_0(Y_t^i) + \int_{\mathbb{R}^d} b(Y_t^i, \cdot) d\mu_t\right) dt + dW_t^i, \quad \mu_t = \operatorname{Law}(Y_t^i)$$

cf. Jabin-Poyato-Soler '21

$$dX_t^i = \alpha_i(t, \boldsymbol{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\alpha_i(t, \boldsymbol{Y}_t) \mid \boldsymbol{Y}_t^i] dt + dW_t^i$$

Optimality principle #1: Y minimizes the rate of entropy production

$$\frac{d}{dt}\Big|_{t=0^+} H\big[\operatorname{Law}((\boldsymbol{Y}_s)_{s\leq t}) \,\big| \,\operatorname{Law}((\boldsymbol{X}_s)_{s\leq t})\big]$$

over all processes with independent components.

Special case: $\alpha_i(t, \mathbf{x}) = \partial_i f(\mathbf{x})$, smooth $f : \mathbb{R}^n \to \mathbb{R}$.

$$dX_t^i = \partial_i f(\boldsymbol{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\partial_i f(\boldsymbol{Y}_t) | Y_t^i] dt + dW_t^i$$

Optimality principle #2: Gradient flow.

Special case: $\alpha_i(t, \mathbf{x}) = \partial_i f(\mathbf{x})$, smooth $f : \mathbb{R}^n \to \mathbb{R}$.

$$dX_t^i = \partial_i f(\mathbf{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\partial_i f(\mathbf{Y}_t) | Y_t^i] dt + dW_t^i$$

Optimality principle #2: Gradient flow.

► (Law(X_t))_{t≥0} is curve of steepest descent for relative entropy functional H(· | e^{f(x)}dx) in Wasserstein space P₂((ℝ^d)ⁿ). Jordan-Kinderlehrer-Otto '98

Special case: $\alpha_i(t, \mathbf{x}) = \partial_i f(\mathbf{x})$, smooth $f : \mathbb{R}^n \to \mathbb{R}$.

$$dX_t^i = \partial_i f(\boldsymbol{X}_t) \qquad dt + dW_t^i$$
$$dY_t^i = \mathbb{E}[\partial_i f(\boldsymbol{Y}_t) | Y_t^i] dt + dW_t^i$$

Optimality principle #2: Gradient flow.

- ► (Law(X_t))_{t≥0} is curve of steepest descent for relative entropy functional H(· | e^{f(x)}dx) in Wasserstein space P₂((ℝ^d)ⁿ). Jordan-Kinderlehrer-Otto '98
- ► (Law(Y_t))_{t≥0} is curve of steepest descent for same entropy functional but in the submanifold of product measures.