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High-dimensional stochastic control, toy model

Players i = 1, . . . , n have state processes X = (X 1, . . . ,X n),

dX i
t = αi (t,Xt)dt + dW i

t , valued in Rd .

α = (α1, . . . , αn) = Markovian, full-information controls.

Collectively optimize:

V := inf
α

J(α) = inf
α

E

[
G (XT ) +

1

2n

n∑
i=1

∫ T

0
|αi (t,Xt)|2dt

]

Here G : (Rd)n → R is arbitrary, say bounded from below.
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The usual symmetric case

“Mean field control” case: G takes the form

G (x) = G(mn
x

), mn
x

:=
1

n

n∑
i=1

δxi , G : P(Rd)→ R.

Mean field limit as n→∞,

V → V := inf
α
G(Law(XT )) +

1

2
E
∫ T

0
|α(t,X t)|2dt,

dX t = α(t,X t)dt + dW t , valued in Rd .

Approximate optimizers for V :
αi (t, x) = α∗(t, xi ), where α∗ optimal for V

These approximate optimizers are distributed! (or decentralized)
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Beyond the symmetric case

For general G : (Rd)n → R, no mean field limit available.
What can be done?

Guiding example: Heterogeneous interactions,

G (x) =
1

n

n∑
i=1

Gi (x), Gi (x) := U(xi ) +
1

2

∑
j 6=i

JijK (xi − xj),

where J ∈ Rn×n, and K is an even function. Alternatively:

G (x) =
1

n

n∑
i=1

U(xi ) +
1

n

∑
1≤i<j≤n

JijK (xi − xj)

Ex A: Usual case is Jij = 1/n
Ex B: J = scaled adjacency matrix of a graph, Jij = (1/di )1i∼j

Related: recent work on graphon limits of particle systems/games
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The distributed optimal control problem

Recall:

V = inf
α

J(α) = inf
α

E

[
G (XT ) +

1

2n

n∑
i=1

∫ T

0
|αi (t,Xt))|2dt

]

Distributed control problem, definition:

Vdstr = inf
α dstr

J(α)

where inf is over controls of the form αi (t,Xt) = α̃i (t,X
i
t ).

Questions:

I When are V and Vdstr close?

I How do we construct a (near-)optimal distributed control?

I General theory for distributed control problems?
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Related litearture

Related perspectives:

I Seguret-Alasseur-Bonnans-De Paola-Oudjane-Trovato ’23

I Stochastic teams and information structures. Yüksel, Saldi,
Basar...

Warning: There are different meanings of the term “distributed”
in the control literature.

First sentence of a 1973 survey by J.L. Lions defines “distributed
systems” as “systems for which the state can be described by a
solution of a partial differential equation”...

Usage in this talk is common in mean field game literature, at least.
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Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung ’22)

Let G : (Rd)n → R be C 2 convex, ‖∇2G‖∞ <∞. Then

0 ≤ Vdstr − V ≤ nT 2
∑

1≤i<j≤n
‖∂ijG‖2∞ =: RHS .

Ex 1: G (x) = 1
n

∑n
i=1 Ui (xi )  RHS= 0

Intuition: RHS measures “how close” the function G is to being
additively separable
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Side note on deterministic controls

A related result to help with intuition:

Define Vdet like Vdstr but with the further restriciton that controls
are deterministic, i.e., solely time-dependent: αi (t, x) = α̃i (t).

Proposition (L.-Mukherjee-Yeung ’22)

Under same assumptions:

0 ≤ Vdet − V ≤ 1

2
nT 2

n∑
i=1

n∑
j=1

‖∂ijG‖2∞ =: RHS2

Summation now includes diagonal terms i = j !

Intuition: RHS2 measures “how close” G is to being affine
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Ex 2, symmetric case:

Let G (x) = F ( 1n
∑n

i=1 f (xi )),

 ∂ijG (x) =
1

n2
F ′′
(1

n

n∑
i=1

f (xi )
)
f ′(xi )f

′(xj), for i 6= j

 RHS ≤ T 2

2n
‖F ′′‖2∞‖f ‖4∞
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‖K ′′‖2∞tr(J2)
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Key condition: tr(J2) = o(n). (cf. Basak-Mukherjee ’17)
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Ex: Jij = (1/d)1i∼j in a d-regular graph  tr(J2) = n/d ,
so RHS→ 0 if d →∞



Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung ’22)

Let G : (Rd)n → R be C 2 convex, ‖∇2G‖∞ <∞. Then
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∑
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Interesting point: If J has row sums = 1, then Vdstr = V =
mean field value.  Universality of the mean field!



A static reformulation
Relative entropy: H(µ | ν) =

∫
log(dµ/dν) dµ

Cole-Hopf/Girsanov solution: With γ := N(0,TI ):

V = inf
µ∈P(Rn)

(∫
G dµ+

1

n
H(µ | γ)

)
(∗)
= −1

n
log

∫
Rn

e−nG dγ

Vdstr = inf
µ∈Pprod(Rn)

(∫
G dµ+

1

n
H(µ | γ)

)
where Pprod(Rn) = set of product measures µ1 ⊗ · · · ⊗ µn.

Static formulation: Let P(dx) ∝ exp(−nG (x))γ(dx). Then

n(Vdstr − V ) = inf
{
H(µ |P) : µ ∈ Pprod(Rn)

}
.

Philosophy: Distributed controls ⇐⇒ independent X i ’s

E[G (XT )] =

∫
Rn

G (x)
n∏

i=1

µi (dxi ), µi = Law(X i
T )
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∫
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n(Vdstr − V ) = inf
{
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where Pprod(Rn) = set of product measures µ1 ⊗ · · · ⊗ µn.

Related literature:

I nonlinear large deviations theory, Chatterjee-Dembo ’16,
also Basak-Mukherjee ’17, Eldan ’18, Austin ’19, Augeri ’20...

I mean field variational inference (Wainwright-Jordan ’08, Blei et al ’17)

Proof ingredients: first-order condition for µ, Log-Sobolev +
Poincaré inequalities for log-concave measures
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Toward more general cost functions

Question: Can we generalize beyond the quadratic running cost
case, where no static formulation is available?

State process: X = (X 1, . . . ,X n) as before,

dX i
t = αi (t,Xt)dt + dW i

t , valued in Rd .

Cost functional:

J(α) := E

[
G (XT ) +

∫ T

0

(
F (Xt) +

1

n

n∑
i=1

Li (X i
t , αi (t,Xt))

)
dt

]
.

Compare: full-information versus distributed values,

V := inf
α

J(α), Vdstr := inf
α dstr

J(α)
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Toward more general cost functions

Assumptions:

I F , G , and Li are convex, Li uniformly in a

I (F ,G , Li ) & Hamiltonian H i (x , p) = supa(−a · p − Li (x , a))
have bounded 2nd order derivatives

Theorem (Jackson-L. ’23)

Vdstr − V ≤ Cn
∑

1≤i<j≤n

(
‖∂ijF‖2∞ + ‖∂ijG‖2∞

)
,

where C depends only (and explicitly) on T and spectral bounds of
Hessians of (F ,G , Li ,H i ).



The mean field case, and convexity

Suppose Li = L does not depend on i , and

F (x) = F(mn
x

), G (x) = G(mn
x

),

where F ,G : P2(Rd)→ R are displacement convex with bounded
2nd order Wasserstein (Lions) derivatives. Then

|V − V | ≤ |V − Vdstr|+ |Vdstr − V | = O(1/n).

This is optimal! Though not surprising, was essentially folklore.
(Germain-Pham-Warin ’22)

Convexity is crucial! Non-convex case is extremely subtle.
Cardaliaguet-Daudin-Jackson-Souganidis ’22, Daudin-Delarue-Jackson ’23,

Cardaliaguet-Jackson-[Mimikos-Stamatopoulos]-Souganidis ’23.
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General theory of distributed control

Distributed control is not “classical” control!

But...

it can be viewed as a sort of mean field control problem,
with state variable (L(X 1

t ), . . . ,L(X n
t )) ∈ (P(Rd))n.

Philosophy: Distributed controls ⇐⇒ independent X i ’s

E[G (XT )] =

∫
(Rd )n

G (x)
n∏

i=1

µiT (dxi ), µit = L(X i
t )
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µiT (dxi ), µit = L(X i
t )
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General theory of distributed control
Simpler case: Li (x , a) = |a|2/2 and F ≡ 0

Distributed value function Vd(t,m) on [0,T ]× (P(Rd))n formally
satisfies a PDE:

− ∂tVd +
1

2

n∑
i=1

∫
Rd

(
n|DmiVd |2 − Tr(DyDmiVd)

)
mi (dy) = 0,

Vd(T ,m) =

∫
G d(m1 ⊗ · · · ⊗mn),

...with a corresponding verification theorem.

Also, a stochastic maximum principle  FBSDE characterization
of optimality:

dX i
t = −nY i

t dt + dW i
t , X i

0 = x i ,

dY i
t = Z i

tdW
i
t , Y i

T = E[G (XT ) |X i
T ].
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Lifting the full-info value function

Full-info (ordinary) value function V : [0,T ]× (Rd)n → R.

Lift: V : [0,T ]× (P(Rd))n → R,

V(t,m) =

∫
(Rd )n

V (t, x)
n∏

i=1

mi (dx i )

...turns out to obey a PDE:

− ∂tV +
1

2

n∑
i=1

∫
Rd

(
n|DmiV|2 − Tr(DyDmiV)

)
mi (dy) = −E (t,m),

V(T ,m) =

∫
G d(m1 ⊗ · · · ⊗mn).

Same PDE as Vd except E term! (to be defined)



Lifting the full-info value function

Full-info (ordinary) value function V : [0,T ]× (Rd)n → R.

Lift: V : [0,T ]× (P(Rd))n → R,

V(t,m) =

∫
(Rd )n

V (t, x)
n∏

i=1

mi (dx i )

...turns out to obey a PDE:

− ∂tV +
1

2

n∑
i=1

∫
Rd

(
n|DmiV|2 − Tr(DyDmiV)

)
mi (dy) = −E (t,m),

V(T ,m) =

∫
G d(m1 ⊗ · · · ⊗mn).

Same PDE as Vd except E term! (to be defined)



Lifting the full-info value function

Full-info (ordinary) value function V : [0,T ]× (Rd)n → R.

Lift: V : [0,T ]× (P(Rd))n → R,

V(t,m) =

∫
(Rd )n

V (t, x)
n∏

i=1

mi (dx i )

...turns out to obey a PDE:

− ∂tV +
1

2

n∑
i=1

∫
Rd

(
n|DmiV|2 − Tr(DyDmiV)

)
mi (dy) = −E (t,m),

V(T ,m) =

∫
G d(m1 ⊗ · · · ⊗mn).

Same PDE as Vd except E term! (to be defined)



Comparing the value functions

Comparison principle =⇒

0 ≤ Vd(t,m)− V(t,m) ≤
∫ T

t
E (s, m̂s) ds,

where (m̂s)s∈[t,T ] is TBD

Def: For m = (m1, . . . ,mn) ∈ (P(Rd))n and ξ = (ξ1, . . . , ξn) with
ξi ∼ mi independent,

E (t,m) :=
n

2

n∑
i=1

EVar(DiV (t, ξ) | ξi ).

Not obvious how to bound it! Uniform (in m) bounds don’t work:
‖DiV ‖∞ . ‖DiG‖∞ = O(1/n) at best (e.g., mean field case),
gives only E = O(1).
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Comparing the value functions

The right idea: Just bound E along (m̂s)s∈[t,T ].

I Key calculation, where convexity of V is crucial:

d

ds
E (s, m̂s) ≥ 0.

I Bound by time-T value:

E (s, m̂s) ≤ E (T , m̂T ) =
n

2

n∑
i=1

EVar(DiG (X̂T ) | X̂ i
T ).

I Poincaré inequality:

Var(DiG (X̂T ) | X̂ i
T ) ≤ (T − t)

∑
j 6=i

E
[
|DijG (X̂T )|2 | X̂ i

T

]
, ∀i .
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Comparing the value functions

Combined:

Vd(t,m)− V(t,m) ≤
∫ T

t
E (s, m̂s) ds

≤ (T − t)E (T , m̂T )

≤ n(T − t)2
∑

1≤i<j≤n
E|DijG (X̂T )|2

Note: Omitted constant factor ∝ Poincaré constant of initial m



Additional results

I Optimal controls αi (full-info) and αi (distributed) are close:

1

n

n∑
i=1

∫ T

0
E|αi

t − αi
t |2 dt ≤ [same bound]

Proof idea: Look at associated FBSDEs (X ,Y ,Z ) and
(X ,Y ,Z ), compute d(Xt −X t) · (Yt −Y t), and use convexity.

I Most low-dimensional marginals are close:

1(n
k

) ∑
S⊂[n],|S |=k

W2
2 (Law(X S),Law(X̂ S)) ≤ k · [same bound]

Implies (quantitative) concentration of empirical measure,

1

n

n∑
i=1

δX i ≈
1

n

n∑
i=1

Law(X̂ i )
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The independent projection

Recall: V ≤ Vdstr trivially, because every distributed control is
also a full-info control.

Key problem: Given a full-info control α(t, x), how to construct a
“comparable” distributed control?

The independent projection will approximate a given state
process X = (X 1, . . . ,X n) by another one Y = (Y 1, . . . ,Y n) in
which components are independent, i.e., control is distributed.

In comparison principle: m̂s = (Law(Y 1
s ), . . . ,Law(Y n

s )).
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The independent projection

Given process Xt = (X 1
t , . . . ,X

n
t ):

dX i
t = αi (t,Xt) dt + dW i

t

Independent projection Yt = (Y 1
t , . . . ,Y

n
t ):

dY i
t = E[αi (t,Yt) |Y i

t ] dt + dW i
t

where E[ · |Y i
t ] is really integration w.r.t. law of (Y k

t )k 6=i .
(Assume iid initialization, for simplicity.)

Among all ways of approximating X by a process with independent
components, this choice Y is natural in a few senses.
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The independent projection

dX i
t = αi (t,Xt) dt + dW i

t

dY i
t = E[αi (t,Yt) |Y i

t ] dt + dW i
t

Example: Mean field interacting particle systems.

αi (t, x) = b0(xi ) +
1

n − 1

∑
k 6=i

b(xi , xk)

=⇒ Y 1, . . . ,Y n iid copies of McKean-Vlasov SDE,

dY i
t =

(
b0(Y i

t ) +

∫
Rd

b(Y i
t , ·) dµt

)
dt + dW i

t , µt = Law(Y i
t ),

the well-known large-n limit in law of X 1
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The independent projection

dX i
t = αi (t,Xt) dt + dW i

t

dY i
t = E[αi (t,Yt) |Y i

t ] dt + dW i
t

Example: Non-exchangeable interacting particle systems,
interaction matrix J = (Jij).

αi (t, x) = b0(xi ) +
∑
k 6=i

Jikb(xi , xk)

J row sums = 1 =⇒ Y 1, . . . ,Y n iid copies of McKean-Vlasov SDE,

dY i
t =

(
b0(Y i

t ) +

∫
Rd

b(Y i
t , ·) dµt

)
dt + dW i

t , µt = Law(Y i
t )

cf. Jabin-Poyato-Soler ’21
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The independent projection

dX i
t = αi (t,Xt) dt + dW i

t

dY i
t = E[αi (t,Yt) |Y i

t ] dt + dW i
t

Optimality principle #1: Y minimizes the rate of entropy
production

d

dt

∣∣∣∣
t=0+

H
[
Law((Ys)s≤t)

∣∣Law((Xs)s≤t)
]

over all processes with independent components.



The independent projection

Special case: αi (t, x) = ∂i f (x), smooth f : Rn → R.

dX i
t = ∂i f (Xt) dt + dW i

t

dY i
t = E[∂i f (Yt) |Y i

t ] dt + dW i
t

Optimality principle #2: Gradient flow.

I (Law(Xt))t≥0 is curve of steepest descent for relative entropy
functional H(· | ef (x)dx) in Wasserstein space P2((Rd)n).

Jordan-Kinderlehrer-Otto ’98

I (Law(Yt))t≥0 is curve of steepest descent for same entropy
functional but in the submanifold of product measures.
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