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High-dimensional stochastic control, toy model

Players i = 1,..., n have state processes X = (X1,..., X"),
dX! = o;(t, X;)dt + dW], valued in RY.
a = (aq,...,a,) = Markovian, full-information controls.

Collectively optimize:

V :=infJ(a) =infE

1« [T )
G(xT)+2nI;/o lai(t, Xy)| dt]

Here G : (R?)” — R is arbitrary, say bounded from below.
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The usual symmetric case

“Mean field control” case: G takes the form

"= 1% %, G PR SR
n
i=1

Mean field limit as n — oo,
_ _ 1 T _
V o Vi=inf GLaw(X1)) 4+ ZIE/ a(t, Xo) P,
@ 0
dX: =a(t,X:)dt + dW,, valued in RY,

Approximate optimizers for V:
ai(t, x) = a.(t, x;), where @, optimal for V

These approximate optimizers are distributed! (or decentralized)
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Beyond the symmetric case

For general G : (RY)" — R, no mean field limit available.
What can be done?

Guiding example: Heterogeneous interactions,
1 1
= S Gi(x), Gi(x) = U(x) + 5 > UK (xi — xp),
i=1 J#i
where J € R™" and K is an even function. Alternatively:

ZUX,)-F* > UK (xi — x))

1<i<j<n

Ex A: Usual case is J; =1/n
Ex B: J = scaled adjacency matrix of a graph, Jj = (1/d;)1i~;

Related: recent work on graphon limits of particle systems/games



The distributed optimal control problem
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The distributed optimal control problem

Recall:

V =infJ(a) =infE
« (o7

n T
G(XT) + 21,12/0 |ai(t, Xt))|2dt]
i=1

Distributed control problem, definition:

Vdstr = inf J(Oé)

« dstr

where inf is over controls of the form a;(t, X;) = a;(t, X[).

Questions:
» When are V and Vg, close?
» How do we construct a (near-)optimal distributed control?

» General theory for distributed control problems?
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Basar...



Related litearture

Related perspectives:
» Seguret-Alasseur-Bonnans-De Paola-Oudjane-Trovato 23

» Stochastic teams and information structures. Yiksel, Saldi,
Basar...

Warning: There are different meanings of the term “distributed”
in the control literature.

First sentence of a 1973 survey by J.L. Lions defines “distributed
systems” as “systems for which the state can be described by a

solution of a partial differential equation”...

Usage in this talk is common in mean field game literature, at least.
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Let G : (RY)" — R be C? convex, |[V?G|loo < 00. Then

0< Vasr =V <nT% Y [19;G|%, = RHS.

1<i<j<n



Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung '22)
Let G : (R9)" — R be C? convex, |V2G|loo < 00. Then

0< Vasr =V <nT% Y [19;G|%, = RHS.
1<i<j<n
Ex 1: G(x) =137, Ui(x) ~ RHS=0

Intuition: RHS measures “how close” the function G is to being
additively separable
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Side note on deterministic controls

A related result to help with intuition:

Define V. like Vgsir but with the further restriciton that controls
are deterministic, i.e., solely time-dependent: «;(t, x) = &;(t).

Proposition (L.-Mukherjee-Yeung '22)

Under same assumptions:

1 2 n n 2
0< Voo =V < 5nT 2; 10; G2 =: RHS;
I=1 j=

Summation now includes diagonal terms j = !

Intuition: RHS; measures “how close” G is to being affine
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Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung '22)
Let G : (RY)" — R be C? convex, |[V?G|lo < 00. Then

0 < Visty — V < nT? Z 10;G||% =: RHS.

1<i<j<n

Ex 2, symmetric case: Let G(x) = F(1 Y7 f(x)),

1 1 —
5600 = ﬁFﬁ(; > f(Xi)> F'(x)f'(x;), fori# )
i=1

T2 12 4



Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung '22)
Let G : (RY)" — R be C? convex,

Glloc < 00. Then

0< Vasr =V <nT% Y [19;G|%, = RHS.

1<i<j<n

Heterogeneous interactions: U, K convex, K even, J; > 0,

ZUX,)—F* Z JiK(xi — xj)

1<i<j<n
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Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung '22)
Let G : (RY)" — R be C? convex, |[V?G|lo < 00. Then

0< Vagw =V <nT? ) [|05G|3 =: RHS.

1<i<j<n

Heterogeneous interactions: U, K convex, K even, J; > 0,

Zux,)+f > JiK(xi = x)

1<i<j<n

RHS<—K”2t J?
~ _2nH l5otr(J7)

Key condition: tr(J?) = o(n). (cf. Basak-Mukherjee '17)



Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung '22)
Let G : (RY)" = R be C? convex, |[V?G|loo < 00. Then

0< Vasr =V <nT% Y 19563, = RHS.

1<i<j<n

Heterogeneous interactions: U, K convex, K even, J; > 0,

ZUX,)—I—* Z JiiK(xi
1<i<j<n
— H <—K”2t“ 2
RHS < - |K" | tr(J?)

Ex: J;j = (1/d)1;-j in a d-regular graph ~ tr(J?) = n/d,
so RHS— 0 if d = o0



Comparing the distributed and original problems

Theorem (L.-Mukherjee-Yeung '22)

Let G : (RY)" — R be C? convex, < oo. Then

0< Vastr =V <nT% D [19;G%, = RHS.

1<i<j<n

Heterogeneous interactions: U, K convex, K even, J; > 0,

ZUX,)-F* > JiK(x
1<i<j<n
HS < 1 [[K" |2 tr( S
~ RHS < ——[|K"|5tr(J7)

Interesting point: If J has row sums = 1, then Vg, = V =
mean field value. ~» Universality of the mean field!
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A static reformulation
Relative entropy: H(p|v) = [log(du/dv)d

Cole-Hopf/Girsanov solution: With v := N(0, T/):

, 1 (» 1 —nG
V = f + ZH = = n
ln( ) (/Gdu (Mfy)) Iog/ne dvy

1
Vier = inf Gdu+ -H
st ueplifld o) < / pt (MW))

where Pp,;q(R"”) = set of product measures p; ® - -+ & pp.

Static formulation: Let P(dx) o< exp(—nG(x))y(dx). Then
n(Vgstr — V) = inf {H(,u| P):pe Pprod(]R”)}.

Philosophy: Distributed controls <= independent X''s

E[G(X7)] /G H,u,(dx, pi = Law(X5)
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A static reformulation
Relative entropy: H(u|v) = [log(dp/dv)dp
Static formulation: Let P(dx) o< exp(—nG(x))y(dx). Then
n(Vase — V) = inf {H(1u| P) : p € Pproa(R") }
where Pp,.,q(R") = set of product measures 3 ® - -+ ® fup.

Related literature:

» nonlinear large deviations theory, Chatterjee-Dembo '16,
also Basak-Mukherjee '17, Eldan '18, Austin '19, Augeri '20...

> mean field variational inference (Wainwright-Jordan '08, Blei et al '17)

Proof ingredients: first-order condition for i, Log-Sobolev +
Poincaré inequalities for log-concave measures
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Question: Can we generalize beyond the quadratic running cost
case, where no static formulation is available?



Toward more general cost functions

Question: Can we generalize beyond the quadratic running cost
case, where no static formulation is available?

State process: X = (X!,...,X") as before,
dX! = aj(t, X¢)dt + dW/, valued in RY.

Cost functional:

J(a) =E

G(X7) + /OT <F(Xt) + % ; Li(X], ai(t, xt))> dt] .

Compare: full-information versus distributed values,

V= igf J(o), Vistr 1= air:jf J(a)

str



Toward more general cost functions

Assumptions:
» F, G, and L' are convex, L uniformly in a
» (F,G,L") & Hamiltonian H'(x, p) = sup,(—a- p — L'(x, a))
have bounded 2nd order derivatives

Theorem (Jackson-L. '23)

Vs =V < Cn Y (105F 1% + 19561%).

1<i<j<n

where C depends only (and explicitly) on T and spectral bounds of
Hessians of (F, G, L', H").



The mean field case, and convexity

Suppose L' = L does not depend on i, and
F(x) = F(mg),  G(x) =G(my),

where F,G : Po(R?) — R are displacement convex with bounded
2nd order Wasserstein (Lions) derivatives. Then

v _V| < |V — Viste| + [ Vastr _V| = 0(1/n).

This is optimal! Though not surprising, was essentially folklore.
(Germain-Pham-Warin '22)



The mean field case, and convexity

Suppose L' = L does not depend on i, and
F(x) = F(mg),  G(x) =G(my),

where F,G : Po(R?) — R are displacement convex with bounded
2nd order Wasserstein (Lions) derivatives. Then

v _V| < |V — Viste| + [ Vastr _V| = 0(1/n).

This is optimal! Though not surprising, was essentially folklore.
(Germain-Pham-Warin '22)

Convexity is crucial! Non-convex case is extremely subtle.
Cardaliaguet-Daudin-Jackson-Souganidis '22, Daudin-Delarue-Jackson '23,
Cardaliaguet-Jackson-[Mimikos-Stamatopoulos]-Souganidis '23.
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General theory of distributed control

Distributed control is not “classical” control!

But... it can be viewed as a sort of mean field control problem,
with state variable (£(X}),...,L£(X[)) € (P(RY))".

Philosophy: Distributed controls <= independent X''s

sieoxn)] = [ 6T, wi=cx)
i=1



General theory of distributed control
Simpler case: L'(x,a) =|a|>/2 and F =0

Distributed value function V4(t, m) on [0, T] x (P(R9))" formally
satisfies a PDE:

1o ;
_ GtVd + 5 Z/ <n\Dm,-Vd]2 — TI'(Dmein)) m’(dy) = 0,
i—1 7R

Vy(T, m) :/Gd(m1®---®m”),

...with a corresponding verification theorem.



General theory of distributed control
Simpler case: L'(x,a) =|a|>/2 and F =0

Distributed value function V4(t, m) on [0, T] x (P(R9))" formally
satisfies a PDE:

1 < -
—0:Va+ 5 > / <n\Dm,-Vd]2 - Tr(Dme,-Vd)) m'(dy) = 0,
i—1 /RY
Va(T, m) :/Gd(ml ®---@m"),

...with a corresponding verification theorem.

Also, a stochastic maximum principle ~~ FBSDE characterization
of optimality:

dX{ = —nY{dt+dW/, X{=x

avi = Ziaw; Vi = E6(Xr) | X}).
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Lifting the full-info value function

Full-info (ordinary) value function V : [0, T] x (R9)" — R.

Lift: V: [0, T] x (P(RY))" — R,

...turns out to obey a PDE:
— 0V + = Z/ (n]Dm,V\z Tr(D, Dm,V)> m'(dy) = —E(t,m),

V(T,m):/Gd(m1®---®m”).

Same PDE as V4 except E term! (to be defined)
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Comparing the value functions
Comparison principle =
T
0 < Vy(t,m) — V(t, m) < / E(s, ;) ds,
t
where (mg)scpe, 77 is TBD

Def: For m = (m!,...,m") € (P(R%))" and & = (£1,...,&™) with
§i ~m' independent,

E(t, m) ZEVar D;iV(t,€)|&).

Not obvious how to bound it! Uniform (in m) bounds don't work:
IDiV]so < ||DiGlloo = O(1/n) at best (e.g., mean field case),
gives only E = O(1).
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Comparing the value functions

The right idea: Just bound E along (ms)sc(s 77

> Key calculation, where convexity of V is crucial:

d .
EE(S, ms) > 0.

» Bound by time-T value:
n
~ ~ n ~ ~.
E(s, ms) < E(T,mr) = 5 > EVar(D;G(Xr) | X7).
i=1
» Poincaré inequality:

Var(D;G(X7)| X7) < (T —t) Y E[|D;G(X7)[*| X}], Vi,
J#i



Comparing the value functions

Combined:

Vy(t, m) — V(t, m) < /T E(s, ) ds
< (T —t)E(T,mr)
<n(T-t? > E[D;G(X7)P

1<i<j<n

Note: Omitted constant factor o< Poincaré constant of initial m
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Additional results

» Optimal controls o' (full-info) and @' (distributed) are close:
N
— Z / Ela! —@i|? dt < [same bound]
n < Jo
i=1

Proof idea: Look at associated FBSDEs (X, Y, Z) and
(X,Y,Z), compute d(X; — X¢)-(Y:— Y¢), and use convexity.

> Most low-dimensional marginals are close:

% Z W%(LaW(XS),LaW()A(S)) < k - [same bound]
(k sc[n],|S|=k

Implies (quantitative) concentration of empirical measure,

IS b > Law(X)
. .
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The independent projection

Recall: V < Vg, trivially, because every distributed control is
also a full-info control.

Key problem: Given a full-info control a(t, x), how to construct a
“comparable” distributed control?

The independent projection will approximate a given state
process X = (X1,..., X") by another one Y = (Y! ..., Y")in

which components are independent, i.e., control is distributed.

In comparison principle: mg = (Law(Y}),..., Law(Y/[)).



The independent projection

Given process X; = (X2,..., X[):

dXi = oi(t,X;)  dt+dW,
Independent projection Y; = (Y},..., Y{):

dY] = E[o(t, Y:) | Y]] dt + dW/

where E[-| Y{] is really integration w.r.t. law of (Y)xz:.
(Assume iid initialization, for simplicity.)



The independent projection

Given process X; = (X2,..., X[):

dXi = oi(t,X;)  dt+dW,
Independent projection Y; = (Y},..., Y{):

dY] = E[o(t, Y:) | Y]] dt + dW/

where E[-| Y{] is really integration w.r.t. law of (Y)xz:.

(Assume iid initialization, for simplicity.)

Among all ways of approximating X by a process with independent
components, this choice Y is natural in a few senses.
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The independent projection

dX! = ai(t,X;)  dt+dW,
dY] = E[o;(t, Y:) | Y]] dt + dWi

Example: Mean field interacting particle systems.

1
aj(t,x) = bo(xi) + —— > b, %)
ki

— Y, ..., Y"iid copies of McKean-Vlasov SDE,
dy] = (bo(Y[) +/ b(Y{,)dut) dt + dWi, 1 = Law(Y]),
Rd

the well-known large-n limit in law of X*



The independent projection

dX] = ai(t, Xy) dt + dW;
dY] = E[o(t, Y:) | Y]] dt + dWi

Example: Non-exchangeable interacting particle systems,
interaction matrix J = (Jj).

ai(t, x) = bo(x;) + Z Jieb(xi, xic)
ki



The independent projection

dX] = ai(t, Xy) dt + dW;
dY] = E[o(t, Y:) | Y]] dt + dWi

Example: Non-exchangeable interacting particle systems,
interaction matrix J = (Jj).

ai(t, x) = bo(x;) + Z Jieb(xi, xic)
ki

Jrowsums =1 = Y1 ... Y"iid copies of McKean-Vlasov SDE,
dyi = <bo(Yt’) + /d b(Y!,") dut) dt +dW/, s =Law(Y))
R

cf. Jabin-Poyato-Soler '21



The independent projection

dX/ = ai(t,X;)  dt+dW]
dYi =Elai(t, Y:)| Y/ dt + dW]

Optimality principle #1: Y minimizes the rate of entropy
production

d
E t=0+ H[La‘w((Ys)SSf) } Law((Xs)sgt)]

over all processes with independent components.



The independent projection

Special case: «;(t, x) = 9;f(x), smooth f : R" — R.

dX! = Oif(X;)  dt+dW,}
dy; = E[0;f(Y:)| Y]] dt + dW]

Optimality principle #2: Gradient flow.



The independent projection

Special case: «;(t, x) = 9;f(x), smooth f : R" — R.

dX! = Oif(X;)  dt+dW,}
dy; = E[0;f(Y:)| Y]] dt + dW]

Optimality principle #2: Gradient flow.

» (Law(X¢))e>0 is curve of steepest descent for relative entropy
functional H(- | ef®)dx) in Wasserstein space P,((R?)").
Jordan-Kinderlehrer-Otto '98



The independent projection

Special case: «;(t, x) = 9;f(x), smooth f : R" — R.

dX! = Oif(X;)  dt+dW,}
dy; = E[0;f(Y:)| Y]] dt + dW]

Optimality principle #2: Gradient flow.

» (Law(X¢))e>0 is curve of steepest descent for relative entropy
functional H(- | ef®)dx) in Wasserstein space P,((R?)").
Jordan-Kinderlehrer-Otto '98

» (Law(Y}))e>o is curve of steepest descent for same entropy
functional but in the submanifold of product measures.
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